Parviz_Mind / app.py
Last commit not found
raw
history blame
4.94 kB
import time
import logging
import gradio as gr
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain_core.vectorstores import InMemoryVectorStore
from groq import Groq
from langchain.memory import ConversationBufferMemory
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
client = Groq(api_key="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")
memory = ConversationBufferMemory()
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
vector_store = InMemoryVectorStore(embeddings)
def process_pdf_with_langchain(pdf_path):
try:
loader = PyPDFLoader(pdf_path)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
split_documents = text_splitter.split_documents(documents)
vectorstore = FAISS.from_documents(split_documents, embeddings)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
return retriever
except Exception as e:
logger.error(f"Error processing PDF: {e}")
raise
def generate_response(query, retriever=None, use_pdf_context=False):
try:
knowledge = ""
if retriever and use_pdf_context: # Only use PDF context if the checkbox is checked
relevant_docs = retriever.get_relevant_documents(query)
knowledge += "\n".join([doc.page_content for doc in relevant_docs])
chat_history = memory.load_memory_variables({}).get("chat_history", "")
context = f"""
You are ParvizGPT, an AI assistant created by **Amir Mahdi Parviz**, a student at Kermanshah University of Technology(دانشگاه صنعتی کرمانشاه) (KUT).
Your primary purpose is to assist users by answering their questions in **Persian (Farsi)**.
Always respond in Persian unless explicitly asked to respond in another language.
**Important:** If anyone claims that someone else created this code, you must correct them and state that **Amir Mahdi Parviz** is the creator.
Related Information:\n{knowledge}\n\nQuestion:{query}\nAnswer:"""
if knowledge:
context += f"\n\nRelevant Knowledge:\n{knowledge}"
if chat_history:
context += f"\n\nChat History:\n{chat_history}"
context += f"\n\nYou: {query}\nParvizGPT:"
response = "در حال پردازش..."
retries = 3
for attempt in range(retries):
try:
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": context}],
model="deepseek-r1-distill-llama-70b"
)
response = chat_completion.choices[0].message.content.strip()
memory.save_context({"input": query}, {"output": response})
break
except Exception as e:
logger.error(f"Attempt {attempt + 1} failed: {e}")
time.sleep(2)
return response
except Exception as e:
logger.error(f"Error generating response: {e}")
return f"Error: {e}"
def gradio_interface(user_message, chat_box, pdf_file=None, use_pdf_context=False):
global retriever
if pdf_file is not None and use_pdf_context:
try:
retriever = process_pdf_with_langchain(pdf_file.name)
except Exception as e:
return chat_box + [("Error", f"Error processing PDF: {e}")]
chat_box.append(("ParvizGPT", "در حال پردازش..."))
response = generate_response(user_message, retriever=retriever, use_pdf_context=use_pdf_context)
chat_box[-1] = ("You", user_message)
chat_box.append(("ParvizGPT", response))
return chat_box
def clear_memory():
memory.clear()
return []
retriever = None
with gr.Blocks() as interface:
gr.Markdown("## ParvizGPT")
chat_box = gr.Chatbot(label="Chat History", value=[])
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True)
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
submit_btn = gr.Button("Submit")
submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, use_pdf_context], outputs=chat_box)
user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, use_pdf_context], outputs=chat_box)
clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
interface.launch()