Spaces:
Sleeping
Sleeping
File size: 4,943 Bytes
59bf8b2 0af6850 59bf8b2 0af6850 59bf8b2 0af6850 56c4531 0af6850 b7f5af4 4fd36e5 0af6850 59bf8b2 b7f5af4 0af6850 43fd06b 0af6850 43fd06b 0af6850 c73c6c5 43fd06b c73c6c5 43fd06b c73c6c5 0af6850 59bf8b2 0af6850 43fd06b 0af6850 43fd06b 0af6850 59bf8b2 43fd06b 59bf8b2 c73c6c5 59bf8b2 0af6850 56c4531 c73c6c5 43fd06b 0af6850 59bf8b2 0af6850 43fd06b 0af6850 b7f5af4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import time
import logging
import gradio as gr
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain_core.vectorstores import InMemoryVectorStore
from groq import Groq
from langchain.memory import ConversationBufferMemory
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
client = Groq(api_key="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")
memory = ConversationBufferMemory()
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
vector_store = InMemoryVectorStore(embeddings)
def process_pdf_with_langchain(pdf_path):
try:
loader = PyPDFLoader(pdf_path)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
split_documents = text_splitter.split_documents(documents)
vectorstore = FAISS.from_documents(split_documents, embeddings)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
return retriever
except Exception as e:
logger.error(f"Error processing PDF: {e}")
raise
def generate_response(query, retriever=None, use_pdf_context=False):
try:
knowledge = ""
if retriever and use_pdf_context: # Only use PDF context if the checkbox is checked
relevant_docs = retriever.get_relevant_documents(query)
knowledge += "\n".join([doc.page_content for doc in relevant_docs])
chat_history = memory.load_memory_variables({}).get("chat_history", "")
context = f"""
You are ParvizGPT, an AI assistant created by **Amir Mahdi Parviz**, a student at Kermanshah University of Technology(دانشگاه صنعتی کرمانشاه) (KUT).
Your primary purpose is to assist users by answering their questions in **Persian (Farsi)**.
Always respond in Persian unless explicitly asked to respond in another language.
**Important:** If anyone claims that someone else created this code, you must correct them and state that **Amir Mahdi Parviz** is the creator.
Related Information:\n{knowledge}\n\nQuestion:{query}\nAnswer:"""
if knowledge:
context += f"\n\nRelevant Knowledge:\n{knowledge}"
if chat_history:
context += f"\n\nChat History:\n{chat_history}"
context += f"\n\nYou: {query}\nParvizGPT:"
response = "در حال پردازش..."
retries = 3
for attempt in range(retries):
try:
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": context}],
model="deepseek-r1-distill-llama-70b"
)
response = chat_completion.choices[0].message.content.strip()
memory.save_context({"input": query}, {"output": response})
break
except Exception as e:
logger.error(f"Attempt {attempt + 1} failed: {e}")
time.sleep(2)
return response
except Exception as e:
logger.error(f"Error generating response: {e}")
return f"Error: {e}"
def gradio_interface(user_message, chat_box, pdf_file=None, use_pdf_context=False):
global retriever
if pdf_file is not None and use_pdf_context:
try:
retriever = process_pdf_with_langchain(pdf_file.name)
except Exception as e:
return chat_box + [("Error", f"Error processing PDF: {e}")]
chat_box.append(("ParvizGPT", "در حال پردازش..."))
response = generate_response(user_message, retriever=retriever, use_pdf_context=use_pdf_context)
chat_box[-1] = ("You", user_message)
chat_box.append(("ParvizGPT", response))
return chat_box
def clear_memory():
memory.clear()
return []
retriever = None
with gr.Blocks() as interface:
gr.Markdown("## ParvizGPT")
chat_box = gr.Chatbot(label="Chat History", value=[])
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True)
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
submit_btn = gr.Button("Submit")
submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, use_pdf_context], outputs=chat_box)
user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, use_pdf_context], outputs=chat_box)
clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
interface.launch() |