Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,21 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from langchain.document_loaders import PyPDFLoader
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain.vectorstores import FAISS
|
6 |
-
from
|
7 |
from groq import Groq
|
8 |
-
import requests
|
9 |
-
from bs4 import BeautifulSoup
|
10 |
-
from serpapi import GoogleSearch
|
11 |
-
import logging
|
12 |
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
client = Groq(api_key="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")
|
17 |
-
|
18 |
embedding_model = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
|
19 |
|
20 |
-
memory
|
|
|
21 |
|
22 |
def process_pdf_with_langchain(pdf_path):
|
23 |
try:
|
@@ -25,7 +23,7 @@ def process_pdf_with_langchain(pdf_path):
|
|
25 |
documents = loader.load()
|
26 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
27 |
split_documents = text_splitter.split_documents(documents)
|
28 |
-
|
29 |
vectorstore = FAISS.from_documents(split_documents, embedding_model)
|
30 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
31 |
return retriever
|
@@ -33,49 +31,7 @@ def process_pdf_with_langchain(pdf_path):
|
|
33 |
logger.error(f"Error processing PDF: {e}")
|
34 |
raise
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
def scrape_google_search(query, num_results=3):
|
39 |
-
try:
|
40 |
-
params = {
|
41 |
-
"q": query,
|
42 |
-
"hl": "fa",
|
43 |
-
"gl": "ir",
|
44 |
-
"num": num_results,
|
45 |
-
"api_key": SERPAPI_KEY,
|
46 |
-
}
|
47 |
-
search = GoogleSearch(params)
|
48 |
-
results = search.get_dict()
|
49 |
-
|
50 |
-
if "error" in results:
|
51 |
-
return f"Error: {results['error']}"
|
52 |
-
|
53 |
-
search_results = []
|
54 |
-
for result in results.get("organic_results", []):
|
55 |
-
title = result.get("title", "No Title")
|
56 |
-
link = result.get("link", "No Link")
|
57 |
-
search_results.append(f"{title}: {link}")
|
58 |
-
return "\n".join(search_results) if search_results else "No results found"
|
59 |
-
except Exception as e:
|
60 |
-
logger.error(f"Error scraping Google search: {e}")
|
61 |
-
return f"Error: {e}"
|
62 |
-
|
63 |
-
def scrape_webpage(url):
|
64 |
-
try:
|
65 |
-
headers = {
|
66 |
-
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
|
67 |
-
}
|
68 |
-
response = requests.get(url, headers=headers)
|
69 |
-
response.raise_for_status()
|
70 |
-
|
71 |
-
soup = BeautifulSoup(response.content, "html.parser")
|
72 |
-
text = soup.get_text(separator="\n")
|
73 |
-
return text.strip()
|
74 |
-
except Exception as e:
|
75 |
-
logger.error(f"Error scraping webpage {url}: {e}")
|
76 |
-
return f"Error: {e}"
|
77 |
-
|
78 |
-
def generate_response(query, retriever=None, use_web_search=False, scrape_web=False):
|
79 |
try:
|
80 |
knowledge = ""
|
81 |
|
@@ -83,21 +39,9 @@ def generate_response(query, retriever=None, use_web_search=False, scrape_web=Fa
|
|
83 |
relevant_docs = retriever.get_relevant_documents(query)
|
84 |
knowledge += "\n".join([doc.page_content for doc in relevant_docs])
|
85 |
|
86 |
-
if use_web_search:
|
87 |
-
web_results = scrape_google_search(query)
|
88 |
-
knowledge += f"\n\nWeb Search Results:\n{web_results}"
|
89 |
-
|
90 |
-
if scrape_web:
|
91 |
-
urls = [word for word in query.split() if word.startswith("http://") or word.startswith("https://")]
|
92 |
-
for url in urls:
|
93 |
-
webpage_content = scrape_webpage(url)
|
94 |
-
knowledge += f"\n\nWebpage Content from {url}:\n{webpage_content}"
|
95 |
-
|
96 |
chat_history = memory.load_memory_variables({}).get("chat_history", "")
|
97 |
-
context =
|
98 |
-
|
99 |
-
f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
|
100 |
-
)
|
101 |
if knowledge:
|
102 |
context += f"\n\nRelevant Knowledge:\n{knowledge}"
|
103 |
if chat_history:
|
@@ -105,19 +49,32 @@ def generate_response(query, retriever=None, use_web_search=False, scrape_web=Fa
|
|
105 |
|
106 |
context += f"\n\nYou: {query}\nParvizGPT:"
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
memory.save_context({"input": query}, {"output": response})
|
115 |
return response
|
116 |
except Exception as e:
|
117 |
logger.error(f"Error generating response: {e}")
|
118 |
return f"Error: {e}"
|
119 |
|
120 |
-
|
|
|
|
|
|
|
121 |
global retriever
|
122 |
if pdf_file is not None:
|
123 |
try:
|
@@ -125,9 +82,13 @@ def gradio_interface(user_message, chat_box, pdf_file=None, enable_web_search=Fa
|
|
125 |
except Exception as e:
|
126 |
return chat_box + [("Error", f"Error processing PDF: {e}")]
|
127 |
|
128 |
-
|
|
|
|
|
|
|
|
|
129 |
chat_box.append(("You", user_message))
|
130 |
-
|
131 |
return chat_box
|
132 |
|
133 |
def clear_memory():
|
@@ -139,24 +100,12 @@ retriever = None
|
|
139 |
with gr.Blocks() as interface:
|
140 |
gr.Markdown("## ParvizGPT")
|
141 |
chat_box = gr.Chatbot(label="Chat History", value=[])
|
142 |
-
|
143 |
-
user_message = gr.Textbox(
|
144 |
-
label="Your Message",
|
145 |
-
placeholder="Type your message here and press Enter...",
|
146 |
-
lines=1,
|
147 |
-
interactive=True,
|
148 |
-
)
|
149 |
-
enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False)
|
150 |
-
scrape_web = gr.Checkbox(label="🌍Scrape Webpages", value=False)
|
151 |
-
|
152 |
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
|
153 |
-
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True
|
154 |
-
|
155 |
submit_btn = gr.Button("Submit")
|
156 |
-
submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file
|
157 |
-
user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file
|
158 |
clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
|
159 |
|
160 |
interface.launch()
|
161 |
-
|
162 |
-
|
|
|
1 |
+
import time
|
2 |
+
import logging
|
3 |
import gradio as gr
|
4 |
from langchain.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
8 |
+
from langchain_core.vectorstores import InMemoryVectorStore
|
9 |
from groq import Groq
|
|
|
|
|
|
|
|
|
10 |
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
client = Groq(api_key="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")
|
|
|
15 |
embedding_model = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
|
16 |
|
17 |
+
# Initialize in-memory vector store for chat history
|
18 |
+
memory = InMemoryVectorStore()
|
19 |
|
20 |
def process_pdf_with_langchain(pdf_path):
|
21 |
try:
|
|
|
23 |
documents = loader.load()
|
24 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
25 |
split_documents = text_splitter.split_documents(documents)
|
26 |
+
|
27 |
vectorstore = FAISS.from_documents(split_documents, embedding_model)
|
28 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
29 |
return retriever
|
|
|
31 |
logger.error(f"Error processing PDF: {e}")
|
32 |
raise
|
33 |
|
34 |
+
def generate_response(query, retriever=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
try:
|
36 |
knowledge = ""
|
37 |
|
|
|
39 |
relevant_docs = retriever.get_relevant_documents(query)
|
40 |
knowledge += "\n".join([doc.page_content for doc in relevant_docs])
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
chat_history = memory.load_memory_variables({}).get("chat_history", "")
|
43 |
+
context = "This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from KUT."
|
44 |
+
|
|
|
|
|
45 |
if knowledge:
|
46 |
context += f"\n\nRelevant Knowledge:\n{knowledge}"
|
47 |
if chat_history:
|
|
|
49 |
|
50 |
context += f"\n\nYou: {query}\nParvizGPT:"
|
51 |
|
52 |
+
# ابتدا یک پیام موقت نمایش داده شود
|
53 |
+
response = "در حال پردازش..."
|
54 |
+
|
55 |
+
retries = 3
|
56 |
+
for attempt in range(retries):
|
57 |
+
try:
|
58 |
+
chat_completion = client.chat.completions.create(
|
59 |
+
messages=[{"role": "user", "content": context}],
|
60 |
+
model="deepseek-r1-distill-llama-70b"
|
61 |
+
)
|
62 |
+
response = chat_completion.choices[0].message.content.strip()
|
63 |
+
memory.save_context({"input": query}, {"output": response})
|
64 |
+
break
|
65 |
+
except Exception as e:
|
66 |
+
logger.error(f"Attempt {attempt + 1} failed: {e}")
|
67 |
+
time.sleep(2)
|
68 |
|
|
|
69 |
return response
|
70 |
except Exception as e:
|
71 |
logger.error(f"Error generating response: {e}")
|
72 |
return f"Error: {e}"
|
73 |
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
def gradio_interface(user_message, chat_box, pdf_file=None):
|
78 |
global retriever
|
79 |
if pdf_file is not None:
|
80 |
try:
|
|
|
82 |
except Exception as e:
|
83 |
return chat_box + [("Error", f"Error processing PDF: {e}")]
|
84 |
|
85 |
+
chat_box.append(("ParvizGPT", "در حال پردازش..."))
|
86 |
+
|
87 |
+
response = generate_response(user_message, retriever=retriever)
|
88 |
+
|
89 |
+
chat_box[-1] = ("ParvizGPT", response)
|
90 |
chat_box.append(("You", user_message))
|
91 |
+
|
92 |
return chat_box
|
93 |
|
94 |
def clear_memory():
|
|
|
100 |
with gr.Blocks() as interface:
|
101 |
gr.Markdown("## ParvizGPT")
|
102 |
chat_box = gr.Chatbot(label="Chat History", value=[])
|
103 |
+
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
|
105 |
+
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
|
|
|
106 |
submit_btn = gr.Button("Submit")
|
107 |
+
submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file], outputs=chat_box)
|
108 |
+
user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file], outputs=chat_box)
|
109 |
clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
|
110 |
|
111 |
interface.launch()
|
|
|
|