Spaces:
Running
Running
import gradio as gr | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import SentenceTransformerEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.memory import ConversationBufferMemory | |
from groq import Groq | |
import requests | |
from bs4 import BeautifulSoup | |
client = Groq(api_key="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") | |
embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
def process_pdf_with_langchain(pdf_path): | |
"""Process the PDF file using LangChain for RAG.""" | |
loader = PyPDFLoader(pdf_path) | |
documents = loader.load() | |
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50) | |
split_documents = text_splitter.split_documents(documents) | |
vectorstore = FAISS.from_documents(split_documents, embedding_model) | |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) | |
return retriever | |
def scrape_google_search(query, num_results=3): | |
"""Search Google and return the top results.""" | |
headers = {"User-Agent": "Mozilla/5.0"} | |
search_url = f"https://www.google.com/search?q={query}" | |
response = requests.get(search_url, headers=headers) | |
soup = BeautifulSoup(response.text, "html.parser") | |
results = [] | |
for g in soup.find_all('div', class_='tF2Cxc')[:num_results]: | |
title = g.find('h3').text | |
link = g.find('a')['href'] | |
results.append(f"{title}: {link}") | |
return "\n".join(results) | |
def generate_response(query, retriever=None, use_web_search=False): | |
"""Generate a response using LangChain with optional retriever and web search.""" | |
knowledge = "" | |
if retriever: | |
relevant_docs = retriever.get_relevant_documents(query) | |
knowledge += "\n".join([doc.page_content for doc in relevant_docs]) | |
if use_web_search: | |
web_results = scrape_google_search(query) | |
knowledge += f"\n\nWeb Search Results:\n{web_results}" | |
chat_history = memory.load_memory_variables({}).get("chat_history", "") | |
context = ( | |
f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz, " | |
f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making." | |
) | |
if knowledge: | |
context += f"\n\nRelevant Knowledge:\n{knowledge}" | |
if chat_history: | |
context += f"\n\nChat History:\n{chat_history}" | |
context += f"\n\nYou: {query}\nParvizGPT:" | |
chat_completion = client.chat.completions.create( | |
messages=[{"role": "user", "content": context}], | |
model="llama-3.3-70b-versatile", | |
) | |
response = chat_completion.choices[0].message.content.strip() | |
memory.save_context({"input": query}, {"output": response}) | |
return response | |
def gradio_interface(user_message, pdf_file=None, enable_web_search=False): | |
global retriever | |
if pdf_file is not None: | |
try: | |
retriever = process_pdf_with_langchain(pdf_file.name) | |
except Exception as e: | |
return f"Error processing PDF: {e}" | |
response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search) | |
return response | |
def clear_memory(): | |
memory.clear() | |
return "Memory cleared!" | |
retriever = None | |
with gr.Blocks() as interface: | |
gr.Markdown("## ParvizGPT with Memory and Web Search Toggle") | |
with gr.Row(): | |
user_message = gr.Textbox(label="Your Question", placeholder="Type your question here...", lines=1) | |
submit_btn = gr.Button("Submit") | |
with gr.Row(): | |
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath") | |
enable_web_search = gr.Checkbox(label="Enable Web Search", value=False) | |
with gr.Row(): | |
clear_memory_btn = gr.Button("Clear Memory") | |
response_output = gr.Textbox(label="Response", placeholder="ParvizGPT's response will appear here.") | |
submit_btn.click(gradio_interface, inputs=[user_message, pdf_file, enable_web_search], outputs=response_output) | |
clear_memory_btn.click(clear_memory, inputs=[], outputs=response_output) | |
gr.HTML( | |
""" | |
<script> | |
document.addEventListener("keydown", function(event) { | |
if (event.key === "Enter" && !event.shiftKey) { | |
event.preventDefault(); | |
document.querySelector('button[title="Submit"]').click(); | |
} | |
}); | |
</script> | |
""" | |
) | |
interface.launch() | |