GIGAParviz commited on
Commit
61bcf16
·
verified ·
1 Parent(s): c53a982

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -116
app.py DELETED
@@ -1,116 +0,0 @@
1
- import gradio as gr
2
- from langchain.document_loaders import PyPDFLoader
3
- from langchain.text_splitter import CharacterTextSplitter
4
- from langchain.embeddings import SentenceTransformerEmbeddings
5
- from langchain.vectorstores import FAISS
6
- from langchain.memory import ConversationBufferMemory
7
- from groq import Groq
8
- import requests
9
- from bs4 import BeautifulSoup
10
- import time # To simulate progress updates
11
-
12
- client = Groq(api_key="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")
13
- embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
14
-
15
- memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
16
-
17
- def process_pdf_with_langchain(pdf_path, progress_callback):
18
- # progress_callback("Initializing PDF processing... 0%")
19
- time.sleep(0.5)
20
- loader = PyPDFLoader(pdf_path)
21
- # progress_callback("Loading PDF... 20%")
22
- documents = loader.load()
23
- time.sleep(0.5)
24
- # progress_callback("Splitting documents... 50%")
25
- text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
26
- split_documents = text_splitter.split_documents(documents)
27
- time.sleep(0.5)
28
- # progress_callback("Creating vector store... 80%")
29
- vectorstore = FAISS.from_documents(split_documents, embedding_model)
30
- retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
31
- progress_callback("Processing complete! 100%")
32
- return retriever
33
-
34
-
35
- def generate_response(query, retriever=None, use_web_search=False):
36
-
37
- knowledge = ""
38
-
39
- if retriever:
40
- relevant_docs = retriever.get_relevant_documents(query)
41
- knowledge += "\n".join([doc.page_content for doc in relevant_docs])
42
-
43
- if use_web_search:
44
- web_results = scrape_google_search(query)
45
- knowledge += f"\n\nWeb Search Results:\n{web_results}"
46
-
47
- chat_history = memory.load_memory_variables({}).get("chat_history", "")
48
- context = (
49
- f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), "
50
- f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
51
- )
52
- if knowledge:
53
- context += f"\n\nRelevant Knowledge:\n{knowledge}"
54
- if chat_history:
55
- context += f"\n\nChat History:\n{chat_history}"
56
-
57
- context += f"\n\nYou: {query}\nParvizGPT:"
58
-
59
- chat_completion = client.chat.completions.create(
60
- messages=[{"role": "user", "content": context}],
61
- model="llama-3.3-70b-versatile",
62
- )
63
- response = chat_completion.choices[0].message.content.strip()
64
-
65
- memory.save_context({"input": query}, {"output": response})
66
- return response
67
-
68
- def upload_and_process(file, progress_display):
69
- try:
70
- global retriever
71
- progress_updates = []
72
-
73
- retriever = process_pdf_with_langchain(file.name, lambda msg: progress_updates.append(msg))
74
-
75
- return "\n".join(progress_updates), "File uploaded and processed successfully."
76
- except Exception as e:
77
- return "", f"Error processing file: {e}"
78
-
79
- def gradio_interface(user_message, chat_box, enable_web_search=False):
80
- global retriever
81
- response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
82
- chat_box.append(("You", user_message))
83
- chat_box.append(("ParvizGPT", response))
84
- return chat_box
85
-
86
- def clear_memory():
87
- memory.clear()
88
- return []
89
-
90
- retriever = None
91
- with gr.Blocks() as interface:
92
- gr.Markdown("## ParvizGPT")
93
- with gr.Row():
94
- chat_box = gr.Chatbot(label="Chat History", value=[])
95
- with gr.Row():
96
- user_message = gr.Textbox(
97
- label="Your Message",
98
- placeholder="Type your message here and press Enter...",
99
- lines=1,
100
- interactive=True,
101
- )
102
- with gr.Row():
103
- clear_memory_btn = gr.Button("Clear Memory", interactive=True)
104
- enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True)
105
- with gr.Row():
106
- pdf_upload = gr.UploadButton(label="📄 Upload Your PDF", file_types=[".pdf"])
107
- progress_display = gr.Textbox(label="Progress", placeholder="Progress updates will appear here", interactive=True)
108
- with gr.Row():
109
- submit_btn = gr.Button("Submit")
110
- pdf_upload.upload(upload_and_process, inputs=[pdf_upload, progress_display], outputs=[progress_display])
111
-
112
- submit_btn.click(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box)
113
- user_message.submit(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box)
114
- clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
115
-
116
- interface.launch()