GIGAParviz commited on
Commit
c53a982
·
verified ·
1 Parent(s): a5fc0f2

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +116 -0
app.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from langchain.document_loaders import PyPDFLoader
3
+ from langchain.text_splitter import CharacterTextSplitter
4
+ from langchain.embeddings import SentenceTransformerEmbeddings
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.memory import ConversationBufferMemory
7
+ from groq import Groq
8
+ import requests
9
+ from bs4 import BeautifulSoup
10
+ import time # To simulate progress updates
11
+
12
+ client = Groq(api_key="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")
13
+ embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
14
+
15
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
16
+
17
+ def process_pdf_with_langchain(pdf_path, progress_callback):
18
+ # progress_callback("Initializing PDF processing... 0%")
19
+ time.sleep(0.5)
20
+ loader = PyPDFLoader(pdf_path)
21
+ # progress_callback("Loading PDF... 20%")
22
+ documents = loader.load()
23
+ time.sleep(0.5)
24
+ # progress_callback("Splitting documents... 50%")
25
+ text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
26
+ split_documents = text_splitter.split_documents(documents)
27
+ time.sleep(0.5)
28
+ # progress_callback("Creating vector store... 80%")
29
+ vectorstore = FAISS.from_documents(split_documents, embedding_model)
30
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
31
+ progress_callback("Processing complete! 100%")
32
+ return retriever
33
+
34
+
35
+ def generate_response(query, retriever=None, use_web_search=False):
36
+
37
+ knowledge = ""
38
+
39
+ if retriever:
40
+ relevant_docs = retriever.get_relevant_documents(query)
41
+ knowledge += "\n".join([doc.page_content for doc in relevant_docs])
42
+
43
+ if use_web_search:
44
+ web_results = scrape_google_search(query)
45
+ knowledge += f"\n\nWeb Search Results:\n{web_results}"
46
+
47
+ chat_history = memory.load_memory_variables({}).get("chat_history", "")
48
+ context = (
49
+ f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), "
50
+ f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
51
+ )
52
+ if knowledge:
53
+ context += f"\n\nRelevant Knowledge:\n{knowledge}"
54
+ if chat_history:
55
+ context += f"\n\nChat History:\n{chat_history}"
56
+
57
+ context += f"\n\nYou: {query}\nParvizGPT:"
58
+
59
+ chat_completion = client.chat.completions.create(
60
+ messages=[{"role": "user", "content": context}],
61
+ model="llama-3.3-70b-versatile",
62
+ )
63
+ response = chat_completion.choices[0].message.content.strip()
64
+
65
+ memory.save_context({"input": query}, {"output": response})
66
+ return response
67
+
68
+ def upload_and_process(file, progress_display):
69
+ try:
70
+ global retriever
71
+ progress_updates = []
72
+
73
+ retriever = process_pdf_with_langchain(file.name, lambda msg: progress_updates.append(msg))
74
+
75
+ return "\n".join(progress_updates), "File uploaded and processed successfully."
76
+ except Exception as e:
77
+ return "", f"Error processing file: {e}"
78
+
79
+ def gradio_interface(user_message, chat_box, enable_web_search=False):
80
+ global retriever
81
+ response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
82
+ chat_box.append(("You", user_message))
83
+ chat_box.append(("ParvizGPT", response))
84
+ return chat_box
85
+
86
+ def clear_memory():
87
+ memory.clear()
88
+ return []
89
+
90
+ retriever = None
91
+ with gr.Blocks() as interface:
92
+ gr.Markdown("## ParvizGPT")
93
+ with gr.Row():
94
+ chat_box = gr.Chatbot(label="Chat History", value=[])
95
+ with gr.Row():
96
+ user_message = gr.Textbox(
97
+ label="Your Message",
98
+ placeholder="Type your message here and press Enter...",
99
+ lines=1,
100
+ interactive=True,
101
+ )
102
+ with gr.Row():
103
+ clear_memory_btn = gr.Button("Clear Memory", interactive=True)
104
+ enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True)
105
+ with gr.Row():
106
+ pdf_upload = gr.UploadButton(label="📄 Upload Your PDF", file_types=[".pdf"])
107
+ progress_display = gr.Textbox(label="Progress", placeholder="Progress updates will appear here", interactive=True)
108
+ with gr.Row():
109
+ submit_btn = gr.Button("Submit")
110
+ pdf_upload.upload(upload_and_process, inputs=[pdf_upload, progress_display], outputs=[progress_display])
111
+
112
+ submit_btn.click(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box)
113
+ user_message.submit(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box)
114
+ clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
115
+
116
+ interface.launch()