GIGAParviz commited on
Commit
a5fc0f2
·
verified ·
1 Parent(s): 0321bb3

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -82
app.py DELETED
@@ -1,82 +0,0 @@
1
- import gradio as gr
2
- from langchain.document_loaders import PyPDFLoader
3
- from langchain.text_splitter import CharacterTextSplitter
4
- from langchain.embeddings import SentenceTransformerEmbeddings
5
- from langchain.vectorstores import FAISS
6
- from langchain.memory import ConversationBufferMemory
7
- from groq import Groq
8
- import requests
9
- from bs4 import BeautifulSoup
10
- import time # To simulate progress updates
11
-
12
- client = Groq(api_key="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")
13
- embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
14
-
15
- memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
16
-
17
- def process_pdf_with_langchain(pdf_path, progress_callback):
18
- # progress_callback("Initializing PDF processing... 0%")
19
- time.sleep(0.5)
20
- loader = PyPDFLoader(pdf_path)
21
- # progress_callback("Loading PDF... 20%")
22
- documents = loader.load()
23
- time.sleep(0.5)
24
- # progress_callback("Splitting documents... 50%")
25
- text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
26
- split_documents = text_splitter.split_documents(documents)
27
- time.sleep(0.5)
28
- # progress_callback("Creating vector store... 80%")
29
- vectorstore = FAISS.from_documents(split_documents, embedding_model)
30
- retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
31
- progress_callback("Processing complete! 100%")
32
- return retriever
33
-
34
- def upload_and_process(file, progress_display):
35
- try:
36
- global retriever
37
- progress_updates = []
38
-
39
- retriever = process_pdf_with_langchain(file.name, lambda msg: progress_updates.append(msg))
40
-
41
- return "\n".join(progress_updates), "File uploaded and processed successfully."
42
- except Exception as e:
43
- return "", f"Error processing file: {e}"
44
-
45
- def gradio_interface(user_message, chat_box, enable_web_search=False):
46
- global retriever
47
- response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
48
- chat_box.append(("You", user_message))
49
- chat_box.append(("ParvizGPT", response))
50
- return chat_box
51
-
52
- def clear_memory():
53
- memory.clear()
54
- return []
55
-
56
- retriever = None
57
- with gr.Blocks() as interface:
58
- gr.Markdown("## ParvizGPT")
59
- with gr.Row():
60
- chat_box = gr.Chatbot(label="Chat History", value=[])
61
- with gr.Row():
62
- user_message = gr.Textbox(
63
- label="Your Message",
64
- placeholder="Type your message here and press Enter...",
65
- lines=1,
66
- interactive=True,
67
- )
68
- with gr.Row():
69
- clear_memory_btn = gr.Button("Clear Memory", interactive=True)
70
- enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True)
71
- with gr.Row():
72
- pdf_upload = gr.UploadButton(label="📄 Upload Your PDF", file_types=[".pdf"])
73
- progress_display = gr.Textbox(label="Progress", placeholder="Progress updates will appear here", interactive=True)
74
- with gr.Row():
75
- submit_btn = gr.Button("Submit")
76
- pdf_upload.upload(upload_and_process, inputs=[pdf_upload, progress_display], outputs=[progress_display])
77
-
78
- submit_btn.click(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box)
79
- user_message.submit(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box)
80
- clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
81
-
82
- interface.launch()