GIGAParviz commited on
Commit
95d2978
·
verified ·
1 Parent(s): af1ef2d

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -132
app.py DELETED
@@ -1,132 +0,0 @@
1
- import gradio as gr
2
- from langchain.document_loaders import PyPDFLoader
3
- from langchain.text_splitter import CharacterTextSplitter
4
- from langchain.embeddings import SentenceTransformerEmbeddings
5
- from langchain.vectorstores import FAISS
6
- from langchain.memory import ConversationBufferMemory
7
- from groq import Groq
8
- import requests
9
- from bs4 import BeautifulSoup
10
- import time
11
-
12
-
13
- client = Groq(api_key="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")
14
- embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
15
-
16
- memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
17
-
18
- def process_pdf_with_langchain(pdf_path, progress_callback):
19
- # progress_callback("Initializing PDF processing... 0%")
20
- time.sleep(0.5)
21
- loader = PyPDFLoader(pdf_path)
22
- # progress_callback("Loading PDF... 20%")
23
- documents = loader.load()
24
- time.sleep(0.5)
25
- # progress_callback("Splitting documents... 50%")
26
- text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
27
- split_documents = text_splitter.split_documents(documents)
28
- time.sleep(0.5)
29
- # progress_callback("Creating vector store... 80%")
30
- vectorstore = FAISS.from_documents(split_documents, embedding_model)
31
- retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
32
- progress_callback("Processing complete! 100%")
33
- return retriever
34
-
35
-
36
- def scrape_google_search(query, num_results=3):
37
-
38
- headers = {"User-Agent": "Mozilla/5.0"}
39
- search_url = f"https://www.google.com/search?q={query}"
40
- response = requests.get(search_url, headers=headers)
41
- soup = BeautifulSoup(response.text, "html.parser")
42
-
43
- results = []
44
- for g in soup.find_all('div', class_='tF2Cxc')[:num_results]:
45
- title = g.find('h3').text
46
- link = g.find('a')['href']
47
- results.append(f"{title}: {link}")
48
- return "\n".join(results)
49
-
50
-
51
- def generate_response(query, retriever=None, use_web_search=False):
52
-
53
- knowledge = ""
54
-
55
- if retriever:
56
- relevant_docs = retriever.get_relevant_documents(query)
57
- knowledge += "\n".join([doc.page_content for doc in relevant_docs])
58
-
59
- if use_web_search:
60
- web_results = scrape_google_search(query)
61
- knowledge += f"\n\nWeb Search Results:\n{web_results}"
62
-
63
- chat_history = memory.load_memory_variables({}).get("chat_history", "")
64
- context = (
65
- f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), "
66
- f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
67
- )
68
- if knowledge:
69
- context += f"\n\nRelevant Knowledge:\n{knowledge}"
70
- if chat_history:
71
- context += f"\n\nChat History:\n{chat_history}"
72
-
73
- context += f"\n\nYou: {query}\nParvizGPT:"
74
-
75
- chat_completion = client.chat.completions.create(
76
- messages=[{"role": "user", "content": context}],
77
- model="llama-3.3-70b-versatile",
78
- )
79
- response = chat_completion.choices[0].message.content.strip()
80
-
81
- memory.save_context({"input": query}, {"output": response})
82
- return response
83
-
84
- def upload_and_process(file, progress_display):
85
- try:
86
- global retriever
87
- progress_updates = []
88
-
89
- retriever = process_pdf_with_langchain(file.name, lambda msg: progress_updates.append(msg))
90
-
91
- return "\n".join(progress_updates), "File uploaded and processed successfully."
92
- except Exception as e:
93
- return "", f"Error processing file: {e}"
94
-
95
- def gradio_interface(user_message, chat_box, enable_web_search=False):
96
- global retriever
97
- response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
98
- chat_box.append(("You", user_message))
99
- chat_box.append(("ParvizGPT", response))
100
- return chat_box
101
-
102
- def clear_memory():
103
- memory.clear()
104
- return []
105
-
106
- retriever = None
107
- with gr.Blocks() as interface:
108
- gr.Markdown("## ParvizGPT")
109
- with gr.Row():
110
- chat_box = gr.Chatbot(label="Chat History", value=[])
111
- with gr.Row():
112
- user_message = gr.Textbox(
113
- label="Your Message",
114
- placeholder="Type your message here and press Enter...",
115
- lines=1,
116
- interactive=True,
117
- )
118
- with gr.Row():
119
- clear_memory_btn = gr.Button("Clear Memory", interactive=True)
120
- enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True)
121
- with gr.Row():
122
- pdf_upload = gr.UploadButton(label="📄 Upload Your PDF", file_types=[".pdf"])
123
- progress_display = gr.Textbox(label="Progress", placeholder="Progress updates will appear here", interactive=True)
124
- with gr.Row():
125
- submit_btn = gr.Button("Submit")
126
- pdf_upload.upload(upload_and_process, inputs=[pdf_upload, progress_display], outputs=[progress_display])
127
-
128
- submit_btn.click(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box)
129
- user_message.submit(gradio_interface, inputs=[user_message, chat_box, enable_web_search], outputs=chat_box)
130
- clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
131
-
132
- interface.launch()