GIGAParviz commited on
Commit
ec95782
·
verified ·
1 Parent(s): 95d2978

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +125 -0
app.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from langchain.document_loaders import PyPDFLoader
3
+ from langchain.text_splitter import CharacterTextSplitter
4
+ from langchain.embeddings import SentenceTransformerEmbeddings
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.memory import ConversationBufferMemory
7
+ from groq import Groq
8
+ import requests
9
+ from bs4 import BeautifulSoup
10
+
11
+ client = Groq(api_key="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")
12
+ embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
13
+
14
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
15
+
16
+ def process_pdf_with_langchain(pdf_path):
17
+
18
+ loader = PyPDFLoader(pdf_path)
19
+ documents = loader.load()
20
+ text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
21
+ split_documents = text_splitter.split_documents(documents)
22
+
23
+ vectorstore = FAISS.from_documents(split_documents, embedding_model)
24
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
25
+ return retriever
26
+
27
+ SERPAPI_KEY = "8a20e83850a3be0a0b4e3aed98bd3addbad56e82d52e639e1a692a02d021bca1"
28
+
29
+ def scrape_google_search(query, num_results=3):
30
+ params = {
31
+ "q": query,
32
+ "hl": "fa",
33
+ "gl": "ir",
34
+ "num": num_results,
35
+ "api_key": SERPAPI_KEY,
36
+ }
37
+ search = GoogleSearch(params)
38
+ results = search.get_dict()
39
+
40
+ if "error" in results:
41
+ return f"Error: {results['error']}"
42
+
43
+ search_results = []
44
+ for result in results.get("organic_results", []):
45
+ title = result.get("title", "No Title")
46
+ link = result.get("link", "No Link")
47
+ search_results.append(f"{title}: {link}")
48
+ return "\n".join(search_results) if search_results else "No results found"
49
+
50
+ def generate_response(query, retriever=None, use_web_search=False):
51
+
52
+ knowledge = ""
53
+
54
+ if retriever:
55
+ relevant_docs = retriever.get_relevant_documents(query)
56
+ knowledge += "\n".join([doc.page_content for doc in relevant_docs])
57
+
58
+ if use_web_search:
59
+ web_results = scrape_google_search(query)
60
+ knowledge += f"\n\nWeb Search Results:\n{web_results}"
61
+
62
+ chat_history = memory.load_memory_variables({}).get("chat_history", "")
63
+ context = (
64
+ f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz from Kermanshah University of Technology (KUT), "
65
+ f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
66
+ )
67
+ if knowledge:
68
+ context += f"\n\nRelevant Knowledge:\n{knowledge}"
69
+ if chat_history:
70
+ context += f"\n\nChat History:\n{chat_history}"
71
+
72
+ context += f"\n\nYou: {query}\nParvizGPT:"
73
+
74
+ chat_completion = client.chat.completions.create(
75
+ messages=[{"role": "user", "content": context}],
76
+ model="llama-3.3-70b-versatile",
77
+ )
78
+ response = chat_completion.choices[0].message.content.strip()
79
+
80
+ memory.save_context({"input": query}, {"output": response})
81
+ return response
82
+
83
+ def gradio_interface(user_message, chat_box, pdf_file=None, enable_web_search=False):
84
+ global retriever
85
+ if pdf_file is not None:
86
+ try:
87
+ retriever = process_pdf_with_langchain(pdf_file.name)
88
+ except Exception as e:
89
+ return chat_box + [("Error", f"Error processing PDF: {e}")]
90
+
91
+ response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
92
+ chat_box.append(("You", user_message))
93
+ chat_box.append(("ParvizGPT", response))
94
+ return chat_box
95
+
96
+ def clear_memory():
97
+ memory.clear()
98
+ return []
99
+
100
+ retriever = None
101
+ with gr.Blocks() as interface:
102
+ gr.Markdown("## ParvizGPT")
103
+ # with gr.Row():
104
+ chat_box = gr.Chatbot(label="Chat History", value=[])
105
+
106
+ # with gr.Row():
107
+ user_message = gr.Textbox(
108
+ label="Your Message",
109
+ placeholder="Type your message here and press Enter...",
110
+ lines=1,
111
+ interactive=True,
112
+ )
113
+ enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False)
114
+
115
+ # with gr.Row():
116
+ clear_memory_btn = gr.Button("Clear Memory", interactive=True)
117
+ # enable_web_search = gr.Checkbox(label="🌐Enable Web Search", value=False, interactive=True)
118
+ pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True , scale=1)
119
+
120
+ submit_btn = gr.Button("Submit")
121
+ submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search], outputs=chat_box)
122
+ user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, enable_web_search], outputs=chat_box)
123
+ clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
124
+
125
+ interface.launch()