GIGAParviz commited on
Commit
fa54ad1
·
verified ·
1 Parent(s): 7d02373

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +106 -0
app.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from langchain.document_loaders import PyPDFLoader
3
+ from langchain.text_splitter import CharacterTextSplitter
4
+ from langchain.embeddings import SentenceTransformerEmbeddings
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.memory import ConversationBufferMemory
7
+ from groq import Groq
8
+ import requests
9
+ from bs4 import BeautifulSoup
10
+
11
+ client = Groq(api_key="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")
12
+ embedding_model = SentenceTransformerEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
13
+
14
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
15
+
16
+ def process_pdf_with_langchain(pdf_path):
17
+
18
+ loader = PyPDFLoader(pdf_path)
19
+ documents = loader.load()
20
+ text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
21
+ split_documents = text_splitter.split_documents(documents)
22
+
23
+ vectorstore = FAISS.from_documents(split_documents, embedding_model)
24
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
25
+ return retriever
26
+
27
+ def scrape_google_search(query, num_results=3):
28
+
29
+ headers = {"User-Agent": "Mozilla/5.0"}
30
+ search_url = f"https://www.google.com/search?q={query}"
31
+ response = requests.get(search_url, headers=headers)
32
+ soup = BeautifulSoup(response.text, "html.parser")
33
+
34
+ results = []
35
+ for g in soup.find_all('div', class_='tF2Cxc')[:num_results]:
36
+ title = g.find('h3').text
37
+ link = g.find('a')['href']
38
+ results.append(f"{title}: {link}")
39
+ return "\n".join(results)
40
+
41
+ def generate_response(query, retriever=None, use_web_search=False):
42
+ knowledge = ""
43
+
44
+ if retriever:
45
+ relevant_docs = retriever.get_relevant_documents(query)
46
+ knowledge += "\n".join([doc.page_content for doc in relevant_docs])
47
+
48
+ if use_web_search:
49
+ web_results = scrape_google_search(query)
50
+ knowledge += f"\n\nWeb Search Results:\n{web_results}"
51
+
52
+ chat_history = memory.load_memory_variables({}).get("chat_history", "")
53
+ context = (
54
+ f"This is a conversation with ParvizGPT, an AI model designed by Amir Mahdi Parviz, "
55
+ f"to help with tasks like answering questions in Persian, providing recommendations, and decision-making."
56
+ )
57
+ if knowledge:
58
+ context += f"\n\nRelevant Knowledge:\n{knowledge}"
59
+ if chat_history:
60
+ context += f"\n\nChat History:\n{chat_history}"
61
+
62
+ context += f"\n\nYou: {query}\nParvizGPT:"
63
+
64
+ chat_completion = client.chat.completions.create(
65
+ messages=[{"role": "user", "content": context}],
66
+ model="llama-3.3-70b-versatile",
67
+ )
68
+ response = chat_completion.choices[0].message.content.strip()
69
+
70
+ memory.save_context({"input": query}, {"output": response})
71
+ return response
72
+
73
+ def gradio_interface(user_message, pdf_file=None, enable_web_search=False):
74
+ global retriever
75
+ if pdf_file is not None:
76
+ try:
77
+ retriever = process_pdf_with_langchain(pdf_file.name)
78
+ except Exception as e:
79
+ return f"Error processing PDF: {e}"
80
+
81
+ response = generate_response(user_message, retriever=retriever, use_web_search=enable_web_search)
82
+ return response
83
+
84
+ def clear_memory():
85
+ memory.clear()
86
+ return "Memory cleared!"
87
+
88
+ retriever = None
89
+
90
+ with gr.Blocks() as interface:
91
+ gr.Markdown("## ParvizGPT")
92
+ with gr.Row():
93
+ user_message = gr.Textbox(label="Your Question", placeholder="Type your question here...", lines=1)
94
+ submit_btn = gr.Button("Submit")
95
+ with gr.Row():
96
+ pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath")
97
+ enable_web_search = gr.Checkbox(label="Enable Web Search", value=False)
98
+ with gr.Row():
99
+ clear_memory_btn = gr.Button("Clear Memory")
100
+ response_output = gr.Textbox(label="Response", placeholder="ParvizGPT's response will appear here.")
101
+
102
+ submit_btn.click(gradio_interface, inputs=[user_message, pdf_file, enable_web_search], outputs=response_output)
103
+ clear_memory_btn.click(clear_memory, inputs=[], outputs=response_output)
104
+
105
+
106
+ interface.launch()