File size: 5,047 Bytes
ba1d2e6
c83ef86
 
ba1d2e6
c83ef86
90a3f92
c83ef86
f283201
 
c83ef86
 
f283201
c83ef86
 
f283201
 
 
c83ef86
 
f283201
 
 
 
c83ef86
f283201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c83ef86
 
f283201
 
 
 
 
 
 
 
c83ef86
f283201
 
 
 
 
 
 
 
 
 
 
 
 
c83ef86
f283201
 
 
 
 
 
 
 
 
 
c83ef86
f283201
c83ef86
f283201
 
 
 
 
c83ef86
f283201
 
 
 
 
 
 
c83ef86
f283201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c83ef86
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import numpy as np
from math import ceil
from huggingface_hub import from_pretrained_keras

model = from_pretrained_keras("GIanlucaRub/doubleResFinal")
def double_res(input_image):
    input_height = input_image.shape[0]
    input_width = input_image.shape[1]
    height = ceil(input_height/128)
    width = ceil(input_width/128)
    expanded_input_image = np.zeros((128*height, 128*width, 3), dtype=np.uint8)
    np.copyto(expanded_input_image[0:input_height, 0:input_width], input_image)

    output_image = np.zeros((128*height*2, 128*width*2, 3), dtype=np.float32)
    
    to_predict = []
    for i in range(height):
        for j in range(width):
            temp_slice = expanded_input_image[i *
                                              128:(i+1)*128, j*128:(j+1)*128]/255
            to_predict.append(temp_slice)

# removing inner borders

    for i in range(height):
        for j in range(width):        
            if i != 0 and j != 0 and i != height-1 and j != width-1:
                right_slice = expanded_input_image[i *
                                                   128:(i+1)*128, (j+1)*128-64:(j+1)*128+64]/255
                to_predict.append(right_slice)
    

                left_slice = expanded_input_image[i *
                                                  128:(i+1)*128, j*128-64:(j)*128+64]/255
                to_predict.append(left_slice)
    

                upper_slice = expanded_input_image[(
                    i+1)*128-64:(i+1)*128+64, j*128:(j+1)*128]/255
                to_predict.append(upper_slice)
                

                lower_slice = expanded_input_image[i *
                                                   128-64:i*128+64, j*128:(j+1)*128]/255
                to_predict.append(lower_slice)
    # removing angles

                lower_right_slice = expanded_input_image[i *
                                                         128-64:i*128+64, (j+1)*128-64:(j+1)*128+64]/255
                to_predict.append(lower_right_slice)

                lower_left_slice = expanded_input_image[i *
                                                        128-64:i*128+64, j*128-64:j*128+64]/255
                to_predict.append(lower_left_slice)
                
# predicting all images at once    
    predicted = model.predict(np.array(to_predict))
    counter = 0
    for i in range(height):
        for j in range(width):
            np.copyto(output_image[i*256:(i+1)*256, j *
                      256:(j+1)*256], predicted[counter])
            counter+=1
    
                

    for i in range(height):
        for j in range(width):        
            if i != 0 and j != 0 and i != height-1 and j != width-1:            
                right_upsampled_slice = predicted[counter]
                counter+=1
                resized_right_slice = right_upsampled_slice[64:192, 64:192]
                np.copyto(output_image[i*256+64:(i+1)*256-64,
                          (j+1)*256-64:(j+1)*256+64], resized_right_slice)
    
                
    

                left_upsampled_slice = predicted[counter]
                counter+=1
                resized_left_slice = left_upsampled_slice[64:192, 64:192]
                np.copyto(output_image[i*256+64:(i+1)*256-64,
                          j*256-64:j*256+64], resized_left_slice)
                
    

                upper_upsampled_slice = predicted[counter]
                counter+=1
                resized_upper_slice = upper_upsampled_slice[64:192, 64:192]
                np.copyto(output_image[(i+1)*256-64:(i+1)*256+64,
                          j*256+64:(j+1)*256-64], resized_upper_slice)
                
    

                lower_upsampled_slice = predicted[counter]
                counter+=1
                resized_lower_slice = lower_upsampled_slice[64:192, 64:192]
                np.copyto(output_image[i*256-64:i*256+64,
                          j*256+64:(j+1)*256-64], resized_lower_slice)



                lower_right_upsampled_slice = predicted[counter]
                counter+=1
                resized_lower_right_slice = lower_right_upsampled_slice[64:192, 64:192]        
                np.copyto(output_image[i*256-64:i*256+64,  (j+1)
                          * 256-64:(j+1)*256+64], resized_lower_right_slice)


                lower_left_upsampled_slice = predicted[counter]
                counter+=1
                resized_lower_left_slice = lower_left_upsampled_slice[64:192, 64:192]
                np.copyto(
                    output_image[i*256-64:i*256+64,  j*256-64:j*256+64], resized_lower_left_slice)

    resized_output_image = output_image[0:input_height*2, 0:input_width*2]
    return resized_output_image

demo = gr.Interface(
    fn=double_res,
    title="Double picture resolution",
    description="Upload a picture and get the horizontal and vertical resolution doubled (4x pixels)",
    allow_flagging="never",
    inputs=[
        gr.inputs.Image(type="numpy")
        ],
    outputs=gr.Image(type="numpy"))

demo.launch()