chat / app.py
GaborToth2's picture
llama3.1 8b
3bad752
raw
history blame
2.26 kB
import gradio as gr
import os
from huggingface_hub import InferenceClient
import cohere
HF_API_KEY = os.getenv("HF_API_KEY")
COHERE_API_KEY = os.getenv("COHERE_API_KEY") # Get Cohere API key
models = ["HuggingFaceH4/zephyr-7b-beta", "microsoft/Phi-4-mini-instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.1-8B-Instruct"]
client_hf = InferenceClient(model=models[3], token=HF_API_KEY) # HF Client
client_cohere = cohere.Client(COHERE_API_KEY) # Cohere Client
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
use_cohere, # Checkbox value
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
if use_cohere: # If Cohere is selected
cohere_response = client_cohere.chat(
message=message,
model="command-r", # Or "command" depending on your plan
temperature=temperature,
max_tokens=max_tokens
)
response = cohere_response.text
yield response # Yield full response (Cohere doesn't stream)
else: # If HF is selected
for message in client_hf.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Gradio UI
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
gr.Checkbox(label="Use Cohere API"), # Checkbox to switch API
],
)
if __name__ == "__main__":
demo.launch()