GabrielML's picture
Add new classes and features
b426c59
raw
history blame
22.5 kB
from concurrent.futures import ThreadPoolExecutor
import copy
import os
import sys
sys.path.append('src')
import shutil
from collections import defaultdict
from functools import lru_cache
import cv2
import gradio as gr
import mediapy
import numpy as np
import pandas as pd
import torch
from deep_translator import GoogleTranslator
from gradio_blocks import build_video_to_camvideo
from Nets import CustomResNet18
from PIL import Image, ImageDraw, ImageFont
from pytorch_grad_cam import GradCAM, HiResCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, FullGrad
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
from tqdm import tqdm
from util import transform
font = ImageFont.truetype("src/Roboto-Regular.ttf", 16)
ffmpeg_path = shutil.which('ffmpeg')
mediapy.set_ffmpeg(ffmpeg_path)
IMAGE_PATH = os.path.join(os.getcwd(), 'src/examples')
IMAGES_PER_ROW = 5
MAXIMAL_FRAMES = 700
BATCHES_TO_PROCESS = 20
OUTPUT_FPS = 10
MAX_OUT_FRAMES = 70
MODEL = CustomResNet18(111).eval()
MODEL.load_state_dict(torch.load('src/results/models/best_model.pth', map_location=torch.device('cpu')))
LANGUAGES_TO_SELECT = {
"None": None,
"German": "de",
"French": "fr",
"Spanish": "es",
"Italian": "it",
"Finnish": "fi",
"Ukrainian": "uk",
"Japanese": "ja",
"Hebrew": "iw"
}
CAM_METHODS = {
"GradCAM": GradCAM,
"GradCAM++": GradCAMPlusPlus,
"XGradCAM": XGradCAM,
"HiResCAM": HiResCAM,
"EigenCAM": EigenCAM
}
LAYERS = {
'layer1': MODEL.resnet.layer1,
'layer2': MODEL.resnet.layer2,
'layer3': MODEL.resnet.layer3,
'layer4': MODEL.resnet.layer4,
'all': [MODEL.resnet.layer1, MODEL.resnet.layer2, MODEL.resnet.layer3, MODEL.resnet.layer4],
'layer3+4': [MODEL.resnet.layer3, MODEL.resnet.layer4]
}
CV2_COLORMAPS = {
"Autumn": cv2.COLORMAP_AUTUMN,
"Bone": cv2.COLORMAP_BONE,
"Jet": cv2.COLORMAP_JET,
"Winter": cv2.COLORMAP_WINTER,
"Rainbow": cv2.COLORMAP_RAINBOW,
"Ocean": cv2.COLORMAP_OCEAN,
"Summer": cv2.COLORMAP_SUMMER,
"Pink": cv2.COLORMAP_PINK,
"Hot": cv2.COLORMAP_HOT,
"Magma": cv2.COLORMAP_MAGMA,
"Inferno": cv2.COLORMAP_INFERNO,
"Plasma": cv2.COLORMAP_PLASMA,
"Twilight": cv2.COLORMAP_TWILIGHT,
}
# cam_model = copy.deepcopy(model)
data_df = pd.read_csv('src/cache/val_df.csv')
C_NUM_TO_NAME = data_df[['encoded_target', 'target']].drop_duplicates().sort_values('encoded_target').set_index('encoded_target')['target'].to_dict()
C_NAME_TO_NUM = {v: k for k, v in C_NUM_TO_NAME.items()}
ALL_CLASSES = sorted(list(C_NUM_TO_NAME.values()), key=lambda x: x.lower())
def get_class_name(idx):
return C_NUM_TO_NAME[idx]
def get_class_idx(name):
return C_NAME_TO_NUM[name]
@lru_cache(maxsize=len(LANGUAGES_TO_SELECT.keys())*111)
def get_translated(to_translate, target_language="German"):
target_language = LANGUAGES_TO_SELECT[target_language] if target_language in LANGUAGES_TO_SELECT else target_language
if target_language == "en": return to_translate
if target_language not in LANGUAGES_TO_SELECT.values(): raise gr.Error(f'Language {target_language} not found.')
return GoogleTranslator(source="en", target=target_language).translate(to_translate)
# for idx in range(111): get_translated(get_class_name(idx))
with ThreadPoolExecutor(max_workers=30) as executor:
# give the executor the list of images and args (in this case, the target language)
# and let the executor map the function to the list of images
for language in tqdm(LANGUAGES_TO_SELECT.keys(), desc='Preloading translations'):
executor.map(get_translated, ALL_CLASSES, [language] * len(ALL_CLASSES))
def infer_image(image, target_language):
if image is None: raise gr.Error("Please upload an image.")
image.save('src/results/infer_image.png')
image = transform(image)
image = image.unsqueeze(0)
with torch.no_grad():
output = MODEL(image)
distribution = torch.nn.functional.softmax(output, dim=1)
ret = defaultdict(float)
for idx, prob in enumerate(distribution[0]):
animal = f'{get_class_name(idx)}'
if target_language is not None and target_language != "None":
animal += f' ({get_translated(get_class_name(idx), target_language)})'
ret[animal] = prob.item()
return ret
def gradcam(image, colormap="Jet", use_eigen_smooth=False, use_aug_smooth=False, BWHighlight=False, alpha=0.5, cam_method=GradCAM, layer=None, specific_class="Predicted Class", label_image=True, target_lang="German"):
if image is None:
raise gr.Error("Please upload an image.")
if isinstance(image, dict):
# Its the image and a mask as pillow both -> Combine them to one image
image = Image.blend(image["image"], image["mask"], alpha=0.5)
if colormap not in CV2_COLORMAPS.keys():
raise gr.Error(f"Colormap {colormap} not found in {list(CV2_COLORMAPS.keys())}.")
else:
colormap = CV2_COLORMAPS[colormap]
image_width, image_height = image.size
if image_width > 6000 or image_height > 6000:
raise gr.Error("The image is too big. The maximal size is 6000x6000.")
MODEL.eval()
layers = LAYERS[layer]
image_tensor = transform(image).unsqueeze(0)
targets = [ClassifierOutputTarget(get_class_idx(specific_class))] if specific_class != "Predicted Class" else None
with CAM_METHODS[cam_method](model=MODEL, target_layers=layers) as cam:
grayscale_cam = cam(input_tensor=image_tensor, targets=targets, aug_smooth=use_aug_smooth, eigen_smooth=use_eigen_smooth)
if label_image:
predicted_animal = get_class_name(np.argmax(cam.outputs.cpu().data.numpy(), axis=-1)[0])
grayscale_cam = grayscale_cam[0, :]
grayscale_cam = cv2.resize(grayscale_cam, (image_width, image_height), interpolation=cv2.INTER_CUBIC)
image = np.float32(image)
visualization = None
if BWHighlight:
image = image * grayscale_cam[..., np.newaxis]
visualization = image.astype(np.uint8)
else:
image = image / 255
visualization = show_cam_on_image(image, grayscale_cam, use_rgb=True, image_weight=alpha, colormap=colormap)
if label_image:
# add alpha channel to visualization
visualization = np.concatenate([visualization, np.ones((image_height, image_width, 1), dtype=np.uint8) * 255], axis=-1)
plt_image = Image.fromarray(visualization, mode="RGBA")
draw = ImageDraw.Draw(plt_image)
draw.rectangle((5, 5, 150, 30), fill=(10, 10, 10, 100))
animal = predicted_animal.capitalize()
if target_lang is not None and target_lang != "None":
animal += f' ({get_translated(animal, target_lang)})'
draw.text((10, 7), animal, font=font, fill=(255, 125, 0, 255))
visualization = np.array(plt_image)
out_image = Image.fromarray(visualization)
return out_image
def gradcam_video(video, colormap="Jet", use_eigen_smooth=False, BWHighlight=False, alpha=0.5, cam_method=GradCAM, layer=None, specific_class="Predicted Class"):
global OUTPUT_FPS, MAXIMAL_FRAMES, BATCHES_TO_PROCESS, MAX_OUT_FRAMES
if video is None: raise gr.Error("Please upload a video.")
if colormap not in CV2_COLORMAPS.keys():
raise gr.Error(f"Colormap {colormap} not found in {list(CV2_COLORMAPS.keys())}.")
else:
colormap = CV2_COLORMAPS[colormap]
video = cv2.VideoCapture(video)
fps = int(video.get(cv2.CAP_PROP_FPS))
if OUTPUT_FPS == -1: OUTPUT_FPS = fps
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
if width > 2000 or height > 2000:
raise gr.Error("The video is too big. The maximal size is 2000x2000.")
print(f'FPS: {fps}, Width: {width}, Height: {height}')
frames = list()
success, image = video.read()
while success:
frames.append(image)
success, image = video.read()
print(f'Frames: {len(frames)}')
if len(frames) == 0:
raise gr.Error("The video is empty.")
if len(frames) >= MAXIMAL_FRAMES:
raise gr.Error(f"The video is too long. The maximal length is {MAXIMAL_FRAMES} frames.")
if len(frames) > MAX_OUT_FRAMES:
frames = frames[::len(frames) // MAX_OUT_FRAMES]
print(f'Frames to process: {len(frames)}')
processed = [Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) for frame in frames]
# generate lists in lists for the images for batch processing. BATCHES_TO_PROCESS images per inner list
batched = [processed[i:i + BATCHES_TO_PROCESS] for i in range(0, len(processed), BATCHES_TO_PROCESS)]
MODEL.eval()
layers = LAYERS[layer]
results = list()
targets = [ClassifierOutputTarget(get_class_idx(specific_class))] if specific_class != "Predicted Class" else None
with CAM_METHODS[cam_method](model=MODEL, target_layers=layers) as cam:
for i, batch in enumerate(tqdm(batched)):
images_tensor = torch.stack([transform(image) for image in batch])
grayscale_cam = cam(input_tensor=images_tensor, targets=targets, aug_smooth=False, eigen_smooth=use_eigen_smooth)
for i, image in enumerate(batch):
_grayscale_cam = grayscale_cam[i, :]
_grayscale_cam = cv2.resize(_grayscale_cam, (width, height), interpolation=cv2.INTER_LINEAR)
image = np.float32(image)
visualization = None
if BWHighlight:
image = image * _grayscale_cam[..., np.newaxis]
visualization = image.astype(np.uint8)
else:
image = image / 255
visualization = show_cam_on_image(image, _grayscale_cam, use_rgb=True, image_weight=alpha, colormap=colormap)
results.append(visualization)
# save video
mediapy.write_video('src/results/gradcam_video.mp4', results, fps=OUTPUT_FPS)
video.release()
return 'src/results/gradcam_video.mp4'
def load_examples():
folder_name_to_header = {
"AI_Generated": "AI Generated Images",
"true": "True Predicted Images (Validation Set)",
"false": "False Predicted Images (Validation Set)",
"others": "Other interesting images from the internet"
}
images_description = {
"AI_Generated": "These images are generated by Dalle3 and Stable Diffusion. All of them are not real images and because of that it is interesting to see how the model predicts them.",
"true": "These images are from the validation set and the model predicted them correctly.",
"false": "These images are from the validation set and the model predicted them incorrectly. Maybe you can see why the model predicted them incorrectly using the GradCAM visualization. :)",
"others": "These images are from the internet and are not part of the validation set. They are interesting because most of them show different animals."
}
loaded_images = defaultdict(list)
for image_type in ["AI_Generated", "true", "false", "others"]:
# for image_type in os.listdir(IMAGE_PATH):
full_path = os.path.join(IMAGE_PATH, image_type).replace('\\', '/').replace('//', '/')
gr.Markdown(f'## {folder_name_to_header[image_type]}')
gr.Markdown(images_description[image_type])
images_to_load = os.listdir(full_path)
rows = (len(images_to_load) // IMAGES_PER_ROW) + 1
for i in range(rows):
with gr.Row(elem_classes=["row-example-images"], equal_height=False):
for j in range(IMAGES_PER_ROW):
if i * IMAGES_PER_ROW + j >= len(images_to_load): break
image = images_to_load[i * IMAGES_PER_ROW + j]
name = f"{image.split('.')[0]}"
image = Image.open(os.path.join(full_path, image))
# scale so that the longest side is 600px
scale = 600 / max(image.size)
image = image.resize((int(image.size[0] * scale), int(image.size[1] * scale)))
loaded_images[image_type].append(
gr.Image(
value=image,
label=name,
type="pil",
interactive=False,
elem_classes=["selectable_images"],
)
)
return loaded_images
css = """
#logo {text-align: right;}
p {text-align: justify; text-justify: inter-word; font-size: 1.1em; line-height: 1.2em;}
.svelte-1btp92j.selectable {cursor: pointer !important; }
"""
with gr.Blocks(theme='freddyaboulton/dracula_revamped', css=css) as demo:
# -------------------------------------------
# HEADER WITH LOGO
# -------------------------------------------
with gr.Row():
with open('src/header.md', 'r', encoding='utf-8') as f:
markdown_string = f.read()
with gr.Column(scale=10):
header = gr.Markdown(markdown_string)
with gr.Column(scale=1):
pil_logo = Image.open('animals.png')
logo = gr.Image(value=pil_logo, scale=2, interactive=False, show_download_button=False, show_label=False, container=False, elem_id="logo")
animal_translation_target_language = gr.Dropdown(
choices=LANGUAGES_TO_SELECT.keys(),
label="Translation language for animals",
value="German",
interactive=True,
scale=2,
)
# -------------------------------------------
# INPUT IMAGE
# -------------------------------------------
with gr.Row():
with gr.Row(variant="panel", equal_height=True):
user_image = gr.Image(
type="pil",
label="Upload Your Own Image",
interactive=True,
)
# -------------------------------------------
# TOOLS
# -------------------------------------------
with gr.Row():
# -------------------------------------------
# PREDICT
# -------------------------------------------
with gr.Tab("Predict"):
with gr.Column():
output = gr.Label(
num_top_classes=5,
label="Output",
info="Top three predicted classes and their confidences.",
scale=5,
)
with gr.Row():
predict_mode_button = gr.Button(value="Predict Animal", label="Predict", info="Click to make a prediction.", scale=6)
predict_mode_button.click(fn=infer_image, inputs=[user_image, animal_translation_target_language], outputs=output, queue=True)
# -------------------------------------------
# EXPLAIN
# -------------------------------------------
with gr.Tab("Explain Image"):
with gr.Row():
with gr.Column():
_info = "There are different GradCAM methods. You can read more about them here: (https://github.com/jacobgil/pytorch-grad-cam#references)."
cam_method = gr.Radio(
list(CAM_METHODS.keys()),
label="GradCAM Method",
info=_info,
value="GradCAM",
interactive=True,
scale=2,
)
_info = """
The alpha value is used to blend the original image with the GradCAM visualization. If you choose a value of 0.5 the original image and the GradCAM visualization will be blended equally.
If you choose a value of 0.1 the original image will be barely visible and if you choose a value of 0.9 the GradCAM visualization will be barely visible.
"""
alpha = gr.Slider(
minimum=.1,
maximum=.9,
value=0.5,
interactive=True,
step=.1,
label="Alpha",
scale=1,
info=_info
)
_info = """
The layer is used to choose the layer of the ResNet50 model. The GradCAM visualization will be based on this layer.
Best to choose is the last layer (layer4) because it is the layer with the most information before the final prediction. This makes the GradCAM visualization the most meaningful.
If all layers are chosen the GradCAM visualization will be averaged over all layers.
"""
layer = gr.Radio(
LAYERS.keys(),
label="Layer",
value="layer4",
interactive=True,
scale=2,
info=_info
)
with gr.Row():
_info = """
Here you can choose the animal to "explain". If you choose "Predicted Class" the GradCAM visualization will be based on the predicted class.
If you choose a specific class the GradCAM visualization will be based on this class.
For example if you have an image with a dog and a cat, you can select either Cat or Dog and see if the model can focus on the correct animal.
"""
animal_to_explain = gr.Dropdown(
choices=["Predicted Class"] + ALL_CLASSES,
label="Animal",
value="Predicted Class",
interactive=True,
scale=4,
info=_info
)
show_predicted_class = gr.Checkbox(
label="Show Predicted Class",
value=True,
interactive=True,
scale=1,
)
with gr.Row():
_info = """
Here you can choose the colormap. Instead of a colormap you can also choose "BW Highlight" to just keep the original image and highlight the important parts of the image.
If you select "BW Highlight" the colormap will be ignored.
"""
colormap = gr.Dropdown(
choices=list(CV2_COLORMAPS.keys()),
label="Colormap",
value="Inferno",
interactive=True,
scale=2,
info=_info
)
bw_highlight = gr.Checkbox(
label="BW Highlight",
value=False,
interactive=True,
scale=1,
)
bw_highlight.description = "Here you can choose if you want to highlight the important parts of the image in black and white."
with gr.Row():
_info = """
The Eigen Smooth is a method to smooth the GradCAM visualization.
"""
use_eigen_smooth = gr.Checkbox(
label="Eigen Smooth",
value=False,
interactive=True,
scale=1,
info=_info
)
_info = """
The Aug Smooth is also a method to smooth the GradCAM visualization. But this method needs a lot of performance and is therefore slow.
"""
use_aug_smooth = gr.Checkbox(
label="Aug Smooth",
value=False,
interactive=True,
scale=1,
info=_info
)
with gr.Column():
gradcam_mode_button = gr.Button(value="Show GradCAM", label="GradCAM", info="Click to make a prediction.", scale=1)
output_cam = gr.Image(
type="pil",
label="GradCAM",
info="GradCAM visualization",
show_label=False,
scale=7,
)
_inputs = [user_image, colormap, use_eigen_smooth, use_aug_smooth, bw_highlight, alpha, cam_method, layer, animal_to_explain, show_predicted_class, animal_translation_target_language]
gradcam_mode_button.click(fn=gradcam, inputs=_inputs, outputs=output_cam, queue=True)
# -------------------------------------------
# Video CAM
# -------------------------------------------
with gr.Tab("Explain Video"):
build_video_to_camvideo(CAM_METHODS, CV2_COLORMAPS, LAYERS, ALL_CLASSES, gradcam_video)
# -------------------------------------------
# EXAMPLES
# -------------------------------------------
with gr.Tab("Example Images"):
placeholder = gr.Markdown("## Example Images")
loaded_images = load_examples()
for k in loaded_images.keys():
for image in loaded_images[k]:
image.select(fn=lambda x: x, inputs=[image], outputs=[user_image], queue=True, scroll_to_output=True)
if __name__ == "__main__":
demo.queue()
print("Starting Gradio server...")
demo.launch(show_tips=True)