Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import os
|
|
4 |
from huggingface_hub import InferenceClient
|
5 |
from io import BytesIO
|
6 |
from PIL import Image
|
|
|
7 |
|
8 |
# Initialize the Flask app
|
9 |
app = Flask(__name__)
|
@@ -15,11 +16,10 @@ client = InferenceClient(token=HF_TOKEN)
|
|
15 |
|
16 |
@app.route('/')
|
17 |
def home():
|
18 |
-
return "Welcome to the Image
|
19 |
-
|
20 |
|
21 |
# Function to generate an image from a text prompt
|
22 |
-
def
|
23 |
try:
|
24 |
# Generate the image using Hugging Face's inference API with additional parameters
|
25 |
image = client.text_to_image(
|
@@ -37,46 +37,101 @@ def generate_image(prompt, negative_prompt=None, height=512, width=512, model="s
|
|
37 |
print(f"Error generating image: {str(e)}")
|
38 |
return None
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# Flask route for the API endpoint to generate an image
|
41 |
@app.route('/generate_image', methods=['POST'])
|
42 |
def generate_api():
|
43 |
data = request.get_json()
|
44 |
|
45 |
-
# Extract
|
46 |
prompt = data.get('prompt', '')
|
47 |
negative_prompt = data.get('negative_prompt', None)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
model_name = data.get('model', 'stabilityai/stable-diffusion-2-1') # Default model
|
53 |
-
seed = data.get('seed', None) # Seed for reproducibility, default is None
|
54 |
|
55 |
if not prompt:
|
56 |
return jsonify({"error": "Prompt is required"}), 400
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
if
|
63 |
-
# Save the image to a BytesIO object
|
64 |
img_byte_arr = BytesIO()
|
65 |
-
|
66 |
-
img_byte_arr.seek(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# Send the generated image as a response
|
69 |
return send_file(
|
70 |
img_byte_arr,
|
71 |
mimetype='image/png',
|
72 |
-
as_attachment=False,
|
73 |
-
download_name='generated_image.png'
|
74 |
)
|
75 |
else:
|
76 |
-
return jsonify({"error": "Failed to generate image"}), 500
|
77 |
-
except Exception as e:
|
78 |
-
print(f"Error in generate_api: {str(e)}") # Log the error
|
79 |
-
return jsonify({"error": str(e)}), 500
|
80 |
|
81 |
# Add this block to make sure your app runs when called
|
82 |
if __name__ == "__main__":
|
|
|
4 |
from huggingface_hub import InferenceClient
|
5 |
from io import BytesIO
|
6 |
from PIL import Image
|
7 |
+
import base64
|
8 |
|
9 |
# Initialize the Flask app
|
10 |
app = Flask(__name__)
|
|
|
16 |
|
17 |
@app.route('/')
|
18 |
def home():
|
19 |
+
return "Welcome to the Image Generation Service!"
|
|
|
20 |
|
21 |
# Function to generate an image from a text prompt
|
22 |
+
def generate_text_to_image(prompt, negative_prompt=None, height=512, width=512, model="stabilityai/stable-diffusion-2-1", num_inference_steps=50, guidance_scale=7.5, seed=None):
|
23 |
try:
|
24 |
# Generate the image using Hugging Face's inference API with additional parameters
|
25 |
image = client.text_to_image(
|
|
|
37 |
print(f"Error generating image: {str(e)}")
|
38 |
return None
|
39 |
|
40 |
+
# Function to modify an existing image using image-to-image processing
|
41 |
+
def generate_image_to_image(input_image, prompt, height, width, num_inference_steps, guidance_scale, seed=None):
|
42 |
+
try:
|
43 |
+
# Hard-coded model for image-to-image processing
|
44 |
+
hardcoded_model = "stabilityai/sdxl-1.0"
|
45 |
+
|
46 |
+
# Convert the base64-encoded input image to a PIL image
|
47 |
+
decoded_image = Image.open(BytesIO(base64.b64decode(input_image)))
|
48 |
+
|
49 |
+
# Modify the image using image-to-image transformation
|
50 |
+
modified_image = client.image_to_image(
|
51 |
+
image=decoded_image,
|
52 |
+
prompt=prompt,
|
53 |
+
model=hardcoded_model,
|
54 |
+
height=height,
|
55 |
+
width=width,
|
56 |
+
num_inference_steps=num_inference_steps,
|
57 |
+
guidance_scale=guidance_scale,
|
58 |
+
seed=seed
|
59 |
+
)
|
60 |
+
return modified_image
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Error generating image-to-image: {str(e)}")
|
63 |
+
return None
|
64 |
+
|
65 |
# Flask route for the API endpoint to generate an image
|
66 |
@app.route('/generate_image', methods=['POST'])
|
67 |
def generate_api():
|
68 |
data = request.get_json()
|
69 |
|
70 |
+
# Extract common fields
|
71 |
prompt = data.get('prompt', '')
|
72 |
negative_prompt = data.get('negative_prompt', None)
|
73 |
+
num_inference_steps = data.get('num_inference_steps', 50)
|
74 |
+
guidance_scale = data.get('guidance_scale', 7.5)
|
75 |
+
model_name = data.get('model', 'stabilityai/stable-diffusion-2-1') # Model specified by the user for text-to-image
|
76 |
+
seed = data.get('seed', None)
|
|
|
|
|
77 |
|
78 |
if not prompt:
|
79 |
return jsonify({"error": "Prompt is required"}), 400
|
80 |
|
81 |
+
# Check if the request contains an image for image-to-image processing
|
82 |
+
input_image = data.get('image', None) # Expecting a base64-encoded image string
|
83 |
+
if input_image:
|
84 |
+
# Extract parameters specific to image-to-image
|
85 |
+
height = data.get('height', 1024)
|
86 |
+
width = data.get('width', 720)
|
87 |
+
|
88 |
+
# Call the image-to-image function
|
89 |
+
final_image = generate_image_to_image(
|
90 |
+
input_image, prompt, height, width, num_inference_steps, guidance_scale, seed
|
91 |
+
)
|
92 |
|
93 |
+
if final_image:
|
94 |
+
# Save the modified image to a BytesIO object
|
95 |
img_byte_arr = BytesIO()
|
96 |
+
final_image.save(img_byte_arr, format='PNG')
|
97 |
+
img_byte_arr.seek(0)
|
98 |
+
|
99 |
+
# Send the modified image as a response
|
100 |
+
return send_file(
|
101 |
+
img_byte_arr,
|
102 |
+
mimetype='image/png',
|
103 |
+
as_attachment=False,
|
104 |
+
download_name='final_image.png'
|
105 |
+
)
|
106 |
+
else:
|
107 |
+
return jsonify({"error": "Failed to generate image-to-image."}), 500
|
108 |
+
|
109 |
+
# If no image is provided, proceed with text-to-image generation
|
110 |
+
else:
|
111 |
+
# Default height and width for text-to-image
|
112 |
+
height = data.get('height', 512)
|
113 |
+
width = data.get('width', 512)
|
114 |
+
|
115 |
+
# Call the text-to-image function
|
116 |
+
generated_image = generate_text_to_image(
|
117 |
+
prompt, negative_prompt, height, width, model_name, num_inference_steps, guidance_scale, seed
|
118 |
+
)
|
119 |
+
|
120 |
+
if generated_image:
|
121 |
+
# Save the generated image to a BytesIO object
|
122 |
+
img_byte_arr = BytesIO()
|
123 |
+
generated_image.save(img_byte_arr, format='PNG')
|
124 |
+
img_byte_arr.seek(0)
|
125 |
|
126 |
# Send the generated image as a response
|
127 |
return send_file(
|
128 |
img_byte_arr,
|
129 |
mimetype='image/png',
|
130 |
+
as_attachment=False,
|
131 |
+
download_name='generated_image.png'
|
132 |
)
|
133 |
else:
|
134 |
+
return jsonify({"error": "Failed to generate text-to-image."}), 500
|
|
|
|
|
|
|
135 |
|
136 |
# Add this block to make sure your app runs when called
|
137 |
if __name__ == "__main__":
|