Update app.py
Browse files
app.py
CHANGED
@@ -1,78 +1,68 @@
|
|
1 |
from flask import Flask, request, jsonify, send_file
|
2 |
-
from flask_cors import CORS
|
3 |
-
import gradio as gr
|
4 |
import asyncio
|
5 |
-
import os
|
6 |
from threading import RLock
|
7 |
from gradio_client import Client
|
8 |
-
from all_models import models #
|
9 |
-
from externalmod import gr_Interface_load #
|
|
|
10 |
|
11 |
app = Flask(__name__)
|
12 |
CORS(app) # Enable CORS for all routes
|
13 |
|
14 |
-
# Gradio Client Initialization
|
15 |
-
client = Client("Geek7/mdztxi2")
|
16 |
-
|
17 |
lock = RLock()
|
18 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
19 |
|
20 |
-
#
|
21 |
def load_fn(models):
|
22 |
global models_load
|
23 |
models_load = {}
|
24 |
-
|
25 |
for model in models:
|
26 |
if model not in models_load.keys():
|
27 |
try:
|
28 |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
29 |
except Exception as error:
|
30 |
print(error)
|
31 |
-
m = gr.Interface(lambda: None, ['text'], ['image'])
|
32 |
models_load.update({model: m})
|
33 |
|
|
|
34 |
load_fn(models)
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
41 |
try:
|
42 |
-
result = await asyncio.
|
43 |
-
except (Exception, asyncio.TimeoutError) as e:
|
44 |
-
print(e)
|
45 |
-
print(f"Task timed out: {model_str}")
|
46 |
-
if not task.done():
|
47 |
-
task.cancel()
|
48 |
-
result = None
|
49 |
-
if task.done() and result is not None:
|
50 |
with lock:
|
51 |
png_path = "image.png"
|
52 |
-
result.save(png_path)
|
53 |
return png_path
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
#
|
57 |
-
@app.route('/
|
58 |
-
def
|
59 |
data = request.get_json()
|
60 |
-
model_str = data
|
61 |
-
prompt = data
|
62 |
-
seed = data.get('seed', 1)
|
63 |
-
|
64 |
-
# Validate input
|
65 |
-
if not model_str or not prompt:
|
66 |
-
return jsonify({"error": "Model string and prompt are required."}), 400
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
76 |
|
77 |
if __name__ == '__main__':
|
78 |
app.run(debug=True)
|
|
|
1 |
from flask import Flask, request, jsonify, send_file
|
2 |
+
from flask_cors import CORS
|
|
|
3 |
import asyncio
|
|
|
4 |
from threading import RLock
|
5 |
from gradio_client import Client
|
6 |
+
from all_models import models # Import your models
|
7 |
+
from externalmod import gr_Interface_load # Import the model loading function
|
8 |
+
import os
|
9 |
|
10 |
app = Flask(__name__)
|
11 |
CORS(app) # Enable CORS for all routes
|
12 |
|
|
|
|
|
|
|
13 |
lock = RLock()
|
14 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
15 |
+
client = Client("Geek7/mdztxi2")
|
16 |
|
17 |
+
# Load models using gr_Interface_load
|
18 |
def load_fn(models):
|
19 |
global models_load
|
20 |
models_load = {}
|
|
|
21 |
for model in models:
|
22 |
if model not in models_load.keys():
|
23 |
try:
|
24 |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
25 |
except Exception as error:
|
26 |
print(error)
|
27 |
+
m = gr.Interface(lambda: None, ['text'], ['image'])
|
28 |
models_load.update({model: m})
|
29 |
|
30 |
+
# Load the models
|
31 |
load_fn(models)
|
32 |
|
33 |
+
num_models = 6
|
34 |
+
MAX_SEED = 3999999999
|
35 |
+
inference_timeout = 600 # 10 minutes
|
36 |
+
|
37 |
+
# Asynchronous inference function
|
38 |
+
async def async_infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
39 |
try:
|
40 |
+
result = await asyncio.to_thread(client.predict, model_str=model_str, prompt=prompt, seed=seed, api_name="/predict")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
with lock:
|
42 |
png_path = "image.png"
|
43 |
+
result.save(png_path) # Save the image to a file
|
44 |
return png_path
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Error during inference: {e}")
|
47 |
+
return None
|
48 |
|
49 |
+
# Define the endpoint for asynchronous inference
|
50 |
+
@app.route('/async_infer', methods=['POST'])
|
51 |
+
def async_infer_endpoint():
|
52 |
data = request.get_json()
|
53 |
+
model_str = data['model_str']
|
54 |
+
prompt = data['prompt']
|
55 |
+
seed = data.get('seed', 1) # Default seed value is 1
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# Make a prediction request
|
58 |
+
try:
|
59 |
+
result_path = asyncio.run(async_infer(model_str, prompt, seed))
|
60 |
+
if result_path:
|
61 |
+
return send_file(result_path, mimetype='image/png') # Send the generated image file
|
62 |
+
else:
|
63 |
+
return jsonify({"error": "Image generation failed."}), 500
|
64 |
+
except Exception as e:
|
65 |
+
return jsonify({"error": str(e)}), 500
|
66 |
|
67 |
if __name__ == '__main__':
|
68 |
app.run(debug=True)
|