Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
5 |
|
6 |
-
|
7 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
8 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
9 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
|
10 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
11 |
-
|
12 |
-
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
|
13 |
-
|
14 |
-
def transcribe_function(new_chunk, state):
|
15 |
-
try:
|
16 |
-
sr, y = new_chunk[0], new_chunk[1]
|
17 |
-
except TypeError:
|
18 |
-
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
|
19 |
-
return state, "", None
|
20 |
-
|
21 |
-
y = y.astype(np.float32) / np.max(np.abs(y))
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
if state is not None:
|
24 |
-
state
|
25 |
else:
|
26 |
-
state =
|
27 |
-
|
28 |
-
result = pipe_asr({"array": state, "sampling_rate": sr}, return_timestamps=False)
|
29 |
-
|
30 |
-
full_text = result.get("text", "")
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
with gr.Blocks() as demo:
|
35 |
-
gr.Markdown("# Voice to Text Transcription")
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
state = gr.State(None)
|
38 |
|
39 |
with gr.Row():
|
@@ -42,9 +35,6 @@ with gr.Blocks() as demo:
|
|
42 |
with gr.Column():
|
43 |
output_text = gr.Textbox(label="Transcription")
|
44 |
|
45 |
-
audio_input.stream(
|
46 |
-
|
47 |
-
demo.launch(show_error=True)
|
48 |
-
|
49 |
-
|
50 |
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
from gradio_client import Client
|
|
|
4 |
|
5 |
+
client = Client("Pijush2023/voitex07122024")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
def transcribe_audio_from_api(new_chunk, state):
|
8 |
+
sr, y = new_chunk
|
9 |
+
y_list = y.tolist() # Convert NumPy array to list for JSON serialization
|
10 |
+
new_chunk_serialized = {"sampling_rate": sr, "array": y_list}
|
11 |
+
|
12 |
+
# Update the state with the new chunk
|
13 |
if state is not None:
|
14 |
+
state += new_chunk_serialized["array"]
|
15 |
else:
|
16 |
+
state = new_chunk_serialized["array"]
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
chunk_to_send = {"sampling_rate": sr, "array": state}
|
|
|
|
|
|
|
19 |
|
20 |
+
result = client.predict(
|
21 |
+
new_chunk=chunk_to_send,
|
22 |
+
api_name="/SAMLOne_real_time"
|
23 |
+
)
|
24 |
+
|
25 |
+
return state, result[1] # Return the updated state and transcribed text
|
26 |
+
|
27 |
+
with gr.Blocks() as frontend:
|
28 |
+
gr.Markdown("# Voice to Text Transcription (Frontend)")
|
29 |
+
|
30 |
state = gr.State(None)
|
31 |
|
32 |
with gr.Row():
|
|
|
35 |
with gr.Column():
|
36 |
output_text = gr.Textbox(label="Transcription")
|
37 |
|
38 |
+
audio_input.stream(transcribe_audio_from_api, inputs=[audio_input, state], outputs=[state, output_text])
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
frontend.launch()
|