Spaces:
Running
Running
import numpy as np | |
from .boxes_utils import assert_and_normalize_shape | |
def translate_boxes(boxes, x_shift=0, y_shift=0, copy=True): | |
"""translate boxes coordinates in x and y dimensions. | |
Args: | |
boxes: (N, 4+K) | |
x_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) | |
shift in x dimension | |
y_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) | |
shift in y dimension | |
copy: bool | |
References: | |
`datasets.pipelines.RandomCrop` in mmdetection | |
""" | |
boxes = np.array(boxes, dtype=np.float32, copy=copy) | |
x_shift = np.asarray(x_shift, np.float32) | |
y_shift = np.asarray(y_shift, np.float32) | |
x_shift = assert_and_normalize_shape(x_shift, boxes.shape[0]) | |
y_shift = assert_and_normalize_shape(y_shift, boxes.shape[0]) | |
boxes[:, 0] += x_shift | |
boxes[:, 1] += y_shift | |
boxes[:, 2] += x_shift | |
boxes[:, 3] += y_shift | |
return boxes | |
def adjust_boxes(boxes, x_min_shift, y_min_shift, x_max_shift, y_max_shift, copy=True): | |
""" | |
Args: | |
boxes: (N, 4+K) | |
x_min_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) | |
shift (x_min, y_min) in x dimension | |
y_min_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) | |
shift (x_min, y_min) in y dimension | |
x_max_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) | |
shift (x_max, y_max) in x dimension | |
y_max_shift: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) | |
shift (x_max, y_max) in y dimension | |
copy: bool | |
""" | |
boxes = np.array(boxes, dtype=np.float32, copy=copy) | |
x_min_shift = np.asarray(x_min_shift, np.float32) | |
y_min_shift = np.asarray(y_min_shift, np.float32) | |
x_max_shift = np.asarray(x_max_shift, np.float32) | |
y_max_shift = np.asarray(y_max_shift, np.float32) | |
x_min_shift = assert_and_normalize_shape(x_min_shift, boxes.shape[0]) | |
y_min_shift = assert_and_normalize_shape(y_min_shift, boxes.shape[0]) | |
x_max_shift = assert_and_normalize_shape(x_max_shift, boxes.shape[0]) | |
y_max_shift = assert_and_normalize_shape(y_max_shift, boxes.shape[0]) | |
boxes[:, 0] += x_min_shift | |
boxes[:, 1] += y_min_shift | |
boxes[:, 2] += x_max_shift | |
boxes[:, 3] += y_max_shift | |
return boxes | |
def inflate_or_deflate_boxes(boxes, width_delta=0, height_delta=0, copy=True): | |
""" | |
Args: | |
boxes: (N, 4+K) | |
width_delta: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) | |
height_delta: array-like whose shape is (), (1,), (N,), (1, 1) or (N, 1) | |
copy: bool | |
""" | |
boxes = np.array(boxes, dtype=np.float32, copy=copy) | |
width_delta = np.asarray(width_delta, np.float32) | |
height_delta = np.asarray(height_delta, np.float32) | |
width_delta = assert_and_normalize_shape(width_delta, boxes.shape[0]) | |
height_delta = assert_and_normalize_shape(height_delta, boxes.shape[0]) | |
half_width_delta = width_delta * 0.5 | |
half_height_delta = height_delta * 0.5 | |
boxes[:, 0] -= half_width_delta | |
boxes[:, 1] -= half_height_delta | |
boxes[:, 2] += half_width_delta | |
boxes[:, 3] += half_height_delta | |
return boxes | |
def inflate_boxes_to_square(boxes, copy=True): | |
"""Inflate boxes to square | |
Args: | |
boxes: (N, 4+K) | |
copy: bool | |
""" | |
boxes = np.array(boxes, dtype=np.float32, copy=copy) | |
widths = boxes[:, 2] - boxes[:, 0] | |
heights = boxes[:, 3] - boxes[:, 1] | |
max_side_lengths = np.maximum(widths, heights) | |
width_deltas = np.subtract(max_side_lengths, widths, widths) | |
height_deltas = np.subtract(max_side_lengths, heights, heights) | |
width_deltas *= 0.5 | |
height_deltas *= 0.5 | |
boxes[:, 0] -= width_deltas | |
boxes[:, 1] -= height_deltas | |
boxes[:, 2] += width_deltas | |
boxes[:, 3] += height_deltas | |
return boxes | |
def deflate_boxes_to_square(boxes, copy=True): | |
"""Deflate boxes to square | |
Args: | |
boxes: (N, 4+K) | |
copy: bool | |
""" | |
boxes = np.array(boxes, dtype=np.float32, copy=copy) | |
widths = boxes[:, 2] - boxes[:, 0] | |
heights = boxes[:, 3] - boxes[:, 1] | |
min_side_lengths = np.minimum(widths, heights) | |
width_deltas = np.subtract(min_side_lengths, widths, widths) | |
height_deltas = np.subtract(min_side_lengths, heights, heights) | |
width_deltas *= 0.5 | |
height_deltas *= 0.5 | |
boxes[:, 0] -= width_deltas | |
boxes[:, 1] -= height_deltas | |
boxes[:, 2] += width_deltas | |
boxes[:, 3] += height_deltas | |
return boxes | |