Spaces:
Runtime error
Runtime error
File size: 7,496 Bytes
c265bc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import streamlit as st
from huggingface_hub import InferenceClient, AsyncInferenceClient
from PIL import Image
from pathlib import Path
import os, subprocess
st.set_page_config(page_title='HG Inference Client Demo',layout="wide")
# Cache the header of the app to prevent re-rendering on each load
@st.cache_resource
def display_app_header():
"""Display the header of the Streamlit app."""
st.title("1️⃣ HG Inference Client Demo 📊 ")
st.subheader("Just a little demontstrator")
# Display the header of the app
display_app_header()
# UI sidebar parameters ####################################
st.sidebar.header("Loging")
if hg_token :=st.sidebar.text_input('Enter your HG token'):
try:
subprocess.check_call(["huggingface-cli", "login", "--token", hg_token])
st.sidebar.info('Logged', icon="ℹ️")
except subprocess.CalledProcessError:
st.sidebar.error('Error with token, try again', icon="⚠️")
else:
st.sidebar.warning("enter your token")
st.sidebar.header("Model")
selected_model = st.sidebar.radio(
"Choose a model or let the client do it",
["Not choose", "Choose"]
)
if selected_model == "Choose":
model = st.sidebar.text_input('Enter a model name. ex : facebook/fastspeech2-en-ljspeech')
else:
model = None
st.sidebar.header("Task")
dict_hg_tasks = {
"Automatic Speech Recognition":"automatic_speech_recognition",
"Text-to-Speech (choose model)":"text_to_speech",
"Image Classification":"image_classification",
"Image Segmentation":"image_segmentation",
"Image-to-Text":"image_to_text",
"Object Detection":"object_detection",
"Text-to-Image":"text_to_image",
"Visual Question Answering":"visual_question_answering",
"Conversational":"conversational",
"Feature Extraction":"feature_extraction",
"Question Answering":"question_answering",
"Summarization":"summarization",
"Text Classification":"text_classification",
"Text Generation":"text_generation",
"Token Classification":"token_classification",
"Translation (choose model)":"translation",
}
dict_hg_tasks_params = {
"automatic_speech_recognition": {
"input": "upload,url",
"output": "text",
"prompt": False,
"context": False
},
"text_to_speech": {
"input": "text",
"output": "audio",
"prompt": False,
"context": False
},
"image_classification": {
"input": "upload,url",
"output": "image,text",
"prompt": False,
"context": False
},
"image_segmentation": {
"input": "upload,url",
"output": "image,text",
"prompt": False,
"context": False
},
"image_to_text": {
"input": "upload,url",
"output": "image,text",
"prompt": False,
"context": False
},
"object_detection": {
"input": "upload,url",
"output": "image,text",
"prompt": False,
"context": False
},
"text_to_image": {
"input": "text",
"output": "image",
"prompt": False,
"context": False
},
"visual_question_answering": {
"input": "upload,url",
"output": "image,text",
"prompt": True,
"context": False
},
"image_to_image": {
"input": "upload,url",
"output": "image,text",
"prompt": True,
"context": False
},
"feature_extraction": {
"input": "text",
"output": "text",
"prompt": False,
"context": False
},
"conversational": {
"input": "text",
"output": "text",
"prompt": False,
"context": False
},
"question_answering": {
"input": None,
"output": "text",
"prompt": True,
"context": True
},
"text_classification": {
"input": "text",
"output": "text",
"prompt": False,
"context": False
},
"token_classification": {
"input": "text",
"output": "text",
"prompt": False,
"context": False
},
"text_generation": {
"input": "text",
"output": "text",
"prompt": False,
"context": False
},
"text_classification": {
"input": "text",
"output": "text",
"prompt": False,
"context": False
},
"translation": {
"input": "text",
"output": "text",
"prompt": False,
"context": False
},
"summarization": {
"input": "text",
"output": "text",
"prompt": False,
"context": False
},
}
selected_task = st.sidebar.radio(
"Choose the task you want to do", # see https://huggingface.co/docs/huggingface_hub/guides/inference"
dict_hg_tasks.keys()
)
st.write(f"The current selected task is : {dict_hg_tasks[selected_task]}")
with st.sidebar.expander("tasks documentation"):
st.write("https://huggingface.co/docs/huggingface_hub/package_reference/inference_client")
# functions ########################################
cwd = os.getcwd()
def get_input(upload,url,text):
if upload is not None:
return upload
else:
if url:
return url
elif text:
return text
return None # Default return if neither upload nor url is provided
def display_inputs(task):
if dict_hg_tasks_params[task]["input"] == "upload,url":
return st.file_uploader("Choose a file"),st.text_input("or enter a file url"),""
elif dict_hg_tasks_params[task]["input"] == "text":
return None,"",st.text_input("Enter a text")
else:
return None,"",""
def display_prompt(task):
if dict_hg_tasks_params[task]["prompt"] is True:
return st.text_input("Enter a question")
return None
def display_context(task):
if dict_hg_tasks_params[task]["context"] is True:
return st.text_area("Enter a context")
return None
# UI main client ####################################
if selected_task :
response = None
task = dict_hg_tasks[selected_task]
if model:
client = InferenceClient(model=model)
else:
client = InferenceClient()
uploaded_input,url_input,text_input = display_inputs(task)
prompt_input = display_prompt(task)
context_input = display_context(task)
if get_input(uploaded_input,url_input,text_input):
input = get_input(uploaded_input,url_input,text_input)
response = getattr(client, task)(input)
elif prompt_input:
if context_input is not None:
response = getattr(client, task)(question=prompt_input,context=context_input)
else:
response = getattr(client, task)(input,prompt=prompt_input)
if response is not None:
col1,col2 = st.columns(2)
with col1:
if "text" in dict_hg_tasks_params[task]["output"]:
st.write(response)
elif "audio" in dict_hg_tasks_params[task]["output"]:
Path(os.path.join(cwd,"audio.flac")).write_bytes(response)
st.audio(os.path.join(cwd,"audio.flac"))
with col2:
if dict_hg_tasks_params[task]["output"] == "image,text":
image = Image.open(input)
st.image(image)
elif dict_hg_tasks_params[task]["output"] == "image":
response.save(os.path.join(cwd,"generated_image.png"))
image = Image.open(os.path.join(cwd,"generated_image.png"))
st.image(image)
|