Spaces:
Sleeping
Sleeping
File size: 8,215 Bytes
e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb e8aa012 9d710fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# Import the necessary components from whisper_online.py
import logging
import os
from typing import Optional
import librosa
import soundfile
import uvicorn
from fastapi import FastAPI, WebSocket
from pydantic import BaseModel, ConfigDict
from starlette.websockets import WebSocketDisconnect
from libs.whisper_streaming.whisper_online import (
ASRBase,
OnlineASRProcessor,
VACOnlineASRProcessor,
add_shared_args,
asr_factory,
set_logging,
create_tokenizer,
load_audio,
load_audio_chunk, OpenaiApiASR,
set_logging
)
import argparse
import sys
import numpy as np
import io
import soundfile
import wave
import requests
import argparse
# from libs.whisper_streaming.whisper_online_server import online
logger = logging.getLogger(__name__)
SAMPLING_RATE = 16000
WARMUP_FILE = "mono16k.test_hebrew.wav"
AUDIO_FILE_URL = "https://raw.githubusercontent.com/AshDavid12/runpod-serverless-forked/main/test_hebrew.wav"
app = FastAPI()
args = argparse.ArgumentParser()
add_shared_args(args)
def drop_option_from_parser(parser, option_name):
"""
Reinitializes the parser and copies all options except the specified option.
Args:
parser (argparse.ArgumentParser): The original argument parser.
option_name (str): The option string to drop (e.g., '--model').
Returns:
argparse.ArgumentParser: A new parser without the specified option.
"""
# Create a new parser with the same description and other attributes
new_parser = argparse.ArgumentParser(
description=parser.description,
epilog=parser.epilog,
formatter_class=parser.formatter_class
)
# Iterate through all the arguments of the original parser
for action in parser._actions:
if "-h" in action.option_strings:
continue
# Check if the option is not the one to drop
if option_name not in action.option_strings :
new_parser._add_action(action)
return new_parser
def convert_to_mono_16k(input_wav: str, output_wav: str) -> None:
"""
Converts any .wav file to mono 16 kHz.
Args:
input_wav (str): Path to the input .wav file.
output_wav (str): Path to save the output .wav file with mono 16 kHz.
"""
# Step 1: Load the audio file with librosa
audio_data, original_sr = librosa.load(input_wav, sr=None, mono=False) # Load at original sampling rate
logger.info("Loaded audio with shape: %s, original sampling rate: %d" % (audio_data.shape, original_sr))
# Step 2: If the audio has multiple channels, average them to make it mono
if audio_data.ndim > 1:
audio_data = librosa.to_mono(audio_data)
# Step 3: Resample the audio to 16 kHz
resampled_audio = librosa.resample(audio_data, orig_sr=original_sr, target_sr=SAMPLING_RATE)
# Step 4: Save the resampled audio as a .wav file in mono at 16 kHz
sf.write(output_wav, resampled_audio, SAMPLING_RATE)
logger.info(f"Converted audio saved to {output_wav}")
def download_warmup_file():
# Download the audio file if not already present
audio_file_path = "test_hebrew.wav"
if not os.path.exists(WARMUP_FILE):
if not os.path.exists(audio_file_path):
response = requests.get(AUDIO_FILE_URL)
with open(audio_file_path, 'wb') as f:
f.write(response.content)
convert_to_mono_16k(audio_file_path, WARMUP_FILE)
class State(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
websocket: WebSocket
asr: ASRBase
online: OnlineASRProcessor
min_limit: int
is_first: bool = True
last_end: Optional[float] = None
async def receive_audio_chunk(state: State) -> Optional[np.ndarray]:
# receive all audio that is available by this time
# blocks operation if less than self.min_chunk seconds is available
# unblocks if connection is closed or a chunk is available
out = []
while sum(len(x) for x in out) < state.min_limit:
raw_bytes = await state.websocket.receive_bytes()
if not raw_bytes:
break
# print("received audio:",len(raw_bytes), "bytes", raw_bytes[:10])
sf = soundfile.SoundFile(io.BytesIO(raw_bytes), channels=1,endian="LITTLE",samplerate=SAMPLING_RATE, subtype="PCM_16",format="RAW")
audio, _ = librosa.load(sf,sr=SAMPLING_RATE,dtype=np.float32)
out.append(audio)
if not out:
return None
flat_out = np.concatenate(out)
if state.is_first and len(flat_out) < state.min_limit:
return None
state.is_first = False
return flat_out
def format_output_transcript(state, o) -> dict:
# output format in stdout is like:
# 0 1720 Takhle to je
# - the first two words are:
# - beg and end timestamp of the text segment, as estimated by Whisper model. The timestamps are not accurate, but they're useful anyway
# - the next words: segment transcript
# This function differs from whisper_online.output_transcript in the following:
# succeeding [beg,end] intervals are not overlapping because ELITR protocol (implemented in online-text-flow events) requires it.
# Therefore, beg, is max of previous end and current beg outputed by Whisper.
# Usually it differs negligibly, by appx 20 ms.
if o[0] is not None:
beg, end = o[0]*1000,o[1]*1000
if state.last_end is not None:
beg = max(beg, state.last_end)
state.last_end = end
print("%1.0f %1.0f %s" % (beg,end,o[2]),flush=True,file=sys.stderr)
return {
"start": "%1.0f" % beg,
"end": "%1.0f" % end,
"text": "%s" % o[2],
}
else:
logger.debug("No text in this segment")
return None
# Define WebSocket endpoint
@app.websocket("/ws_transcribe_streaming")
async def websocket_transcribe(websocket: WebSocket):
logger.info("New WebSocket connection request received.")
await websocket.accept()
logger.info("WebSocket connection established successfully.")
# initialize the ASR model
logger.info("Loading whisper model...")
asr, online = asr_factory(args)
state = State(
websocket=websocket,
asr=asr,
online=online,
min_limit=args.min_chunk_size * SAMPLING_RATE,
)
# warm up the ASR because the very first transcribe takes more time than the others.
# Test results in https://github.com/ufal/whisper_streaming/pull/81
logger.info("Warming up the whisper model...")
a = load_audio_chunk(WARMUP_FILE, 0, 1)
asr.transcribe(a)
logger.info("Whisper is warmed up.")
try:
while True:
a = await receive_audio_chunk(state)
if a is None:
break
state.online.insert_audio_chunk(a)
o = online.process_iter()
try:
if result := format_output_transcript(state, o):
await websocket.send_json(result)
except BrokenPipeError:
logger.info("broken pipe -- connection closed?")
break
except WebSocketDisconnect:
logger.info("WebSocket connection closed by the client.")
break
except Exception as e:
logger.error(f"Unexpected error during WebSocket transcription: {e}")
await websocket.send_json({"error": str(e)})
finally:
logger.info("Cleaning up and closing WebSocket connection.")
def main():
global args
args = drop_option_from_parser(args, '--model')
args.add_argument('--model', type=str,
help="Name size of the Whisper model to use. The model is automatically downloaded from the model hub if not present in model cache dir.")
args.parse_args([
'--lan', 'he',
'--model', 'ivrit-ai/faster-whisper-v2-d4',
'--backend', 'faster-whisper',
'--vad',
# '--vac', '--buffer_trimming', 'segment', '--buffer_trimming_sec', '15', '--min_chunk_size', '1.0', '--vac_chunk_size', '0.04', '--start_at', '0.0', '--offline', '--comp_unaware', '--log_level', 'DEBUG'
])
uvicorn.run(app)
if __name__ == "__main__":
main() |