glucosedao / tools.py
Livia_Zaharia
added code for the first time
bacf16b
raw
history blame
7.13 kB
import sys
import os
import pickle
import gzip
from pathlib import Path
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from matplotlib.figure import Figure
import torch
from scipy import stats
from gluformer.model import Gluformer
from utils.darts_processing import *
from utils.darts_dataset import *
import hashlib
from urllib.parse import urlparse
import numpy as np
import typer
glucose = Path(os.path.abspath(__file__)).parent.resolve()
file_directory = glucose / "files"
def plot_forecast(forecasts: np.ndarray, scalers: Any, dataset_test_glufo: Any, filename: str):
filename=filename
forecasts = (forecasts - scalers['target'].min_) / scalers['target'].scale_
trues = [dataset_test_glufo.evalsample(i) for i in range(len(dataset_test_glufo))]
trues = scalers['target'].inverse_transform(trues)
trues = [ts.values() for ts in trues] # Convert TimeSeries to numpy arrays
trues = np.array(trues)
inputs = [dataset_test_glufo[i][0] for i in range(len(dataset_test_glufo))]
inputs = (np.array(inputs) - scalers['target'].min_) / scalers['target'].scale_
# Plot settings
colors = ['#00264c', '#0a2c62', '#14437f', '#1f5a9d', '#2973bb', '#358ad9', '#4d9af4', '#7bb7ff', '#add5ff', '#e6f3ff']
cmap = mcolors.LinearSegmentedColormap.from_list('my_colormap', colors)
sns.set_theme(style="whitegrid")
# Generate the plot
fig, ax = plt.subplots(figsize=(10, 6))
# Select a specific sample to plot
ind = 30 # Example index
samples = np.random.normal(
loc=forecasts[ind, :], # Mean (center) of the distribution
scale=0.1, # Standard deviation (spread) of the distribution
size=(forecasts.shape[1], forecasts.shape[2])
)
#samples = samples.reshape(samples.shape[0], samples.shape[1], -1)
#print ("samples",samples.shape)
# Plot predictive distribution
for point in range(samples.shape[0]):
kde = stats.gaussian_kde(samples[point,:])
maxi, mini = 1.2 * np.max(samples[point, :]), 0.8 * np.min(samples[point, :])
y_grid = np.linspace(mini, maxi, 200)
x = kde(y_grid)
ax.fill_betweenx(y_grid, x1=point, x2=point - x * 15,
alpha=0.7,
edgecolor='black',
color=cmap(point / samples.shape[0]))
# Plot median
forecast = samples[:, :]
median = np.quantile(forecast, 0.5, axis=-1)
ax.plot(np.arange(12), median, color='red', marker='o')
# Plot true values
ax.plot(np.arange(-12, 12), np.concatenate([inputs[ind, -12:], trues[ind, :]]), color='blue')
# Add labels and title
ax.set_xlabel('Time (in 5 minute intervals)')
ax.set_ylabel('Glucose (mg/dL)')
ax.set_title(f'Gluformer Prediction with Gradient for dateset')
# Adjust font sizes
ax.xaxis.label.set_fontsize(16)
ax.yaxis.label.set_fontsize(16)
ax.title.set_fontsize(18)
for item in ax.get_xticklabels() + ax.get_yticklabels():
item.set_fontsize(14)
# Save figure
plt.tight_layout()
where = file_directory /filename
plt.savefig(str(where), dpi=300, bbox_inches='tight')
return where,ax
def generate_filename_from_url(url: str, extension: str = "png") -> str:
"""
:param url:
:param extension:
:return:
"""
# Extract the last segment of the URL
last_segment = urlparse(url).path.split('/')[-1]
# Compute the hash of the URL
url_hash = hashlib.md5(url.encode('utf-8')).hexdigest()
# Create the filename
filename = f"{last_segment.replace('.','_')}_{url_hash}.{extension}"
return filename
def predict_glucose_tool(url: str= 'https://huggingface.co/datasets/Livia-Zaharia/glucose_processed/blob/main/livia_mini.csv',
model: str = 'https://huggingface.co/Livia-Zaharia/gluformer_models/blob/main/gluformer_1samples_10000epochs_10heads_32batch_geluactivation_livia_mini_weights.pth'
) -> Figure:
"""
Function to predict future glucose of user. It receives URL with users csv. It will run an ML and will return URL with predictions that user can open on her own..
:param url: of the csv file with glucose values
:param model: model that is used to predict the glucose
:param explain if it should give both url and explanation
:param if the person is diabetic when doing prediction and explanation
:return:
"""
formatter, series, scalers = load_data(url=str(url), config_path=file_directory / "config.yaml", use_covs=True,
cov_type='dual',
use_static_covs=True)
filename = generate_filename_from_url(url)
formatter.params['gluformer'] = {
'in_len': 96, # example input length, adjust as necessary
'd_model': 512, # model dimension
'n_heads': 10, # number of attention heads##############################################################################
'd_fcn': 1024, # fully connected layer dimension
'num_enc_layers': 2, # number of encoder layers
'num_dec_layers': 2, # number of decoder layers
'length_pred': 12 # prediction length, adjust as necessary
}
num_dynamic_features = series['train']['future'][-1].n_components
num_static_features = series['train']['static'][-1].n_components
glufo = Gluformer(
d_model=formatter.params['gluformer']['d_model'],
n_heads=formatter.params['gluformer']['n_heads'],
d_fcn=formatter.params['gluformer']['d_fcn'],
r_drop=0.2,
activ='gelu',
num_enc_layers=formatter.params['gluformer']['num_enc_layers'],
num_dec_layers=formatter.params['gluformer']['num_dec_layers'],
distil=True,
len_seq=formatter.params['gluformer']['in_len'],
label_len=formatter.params['gluformer']['in_len'] // 3,
len_pred=formatter.params['length_pred'],
num_dynamic_features=num_dynamic_features,
num_static_features=num_static_features
)
weights = gr.Interface.load(model)
assert f"weights for {model} should exist", weights.exists()
device = "cuda" if torch.cuda.is_available() else "cpu"
glufo.load_state_dict(torch.load(str(weights), map_location=torch.device(device), weights_only=False))
# Define dataset for inference
dataset_test_glufo = SamplingDatasetInferenceDual(
target_series=series['test']['target'],
covariates=series['test']['future'],
input_chunk_length=formatter.params['gluformer']['in_len'],
output_chunk_length=formatter.params['length_pred'],
use_static_covariates=True,
array_output_only=True
)
forecasts, _ = glufo.predict(
dataset_test_glufo,
batch_size=16,####################################################
num_samples=10,
device='cpu'
)
figure_path, result = plot_forecast(forecasts, scalers, dataset_test_glufo,filename)
return result
if __name__ == "__main__":
predict_glucose_tool()