ART_v1.0 / modeling_crello.py
WYBar's picture
reset to resize
b9f70fd
raw
history blame
7.58 kB
import torch
from transformers import PreTrainedModel, PretrainedConfig, AutoModel, AutoModelForCausalLM, OPTForCausalLM, BitsAndBytesConfig
from torch import nn
import os
from typing import Optional, List
import os
def kmp_preprocess(pattern):
pattern_len = len(pattern)
prefix_suffix = [0] * pattern_len
j = 0
for i in range(1, pattern_len):
while j > 0 and pattern[i] != pattern[j]:
j = prefix_suffix[j - 1]
if pattern[i] == pattern[j]:
j += 1
prefix_suffix[i] = j
return prefix_suffix
def kmp_search(text, pattern):
text_len = len(text)
pattern_len = len(pattern)
prefix_suffix = kmp_preprocess(pattern)
matches = []
j = 0
for i in range(text_len):
while j > 0 and text[i] != pattern[j]:
j = prefix_suffix[j - 1]
if text[i] == pattern[j]:
j += 1
if j == pattern_len:
matches.append(i - j + 1)
j = prefix_suffix[j - 1]
return matches
class ModelWrapper:
def __init__(self, model):
self.model = model
def __getattr__(self, name):
return getattr(self.model, name)
@torch.no_grad()
def __call__(self, pixel_values):
return self.model(pixel_values)
def eval(self):
pass
def train(self):
pass
def parameters(self):
return self.model.parameters()
class CrelloModelConfig(PretrainedConfig):
def __init__(
self,
old_vocab_size: int = 32000,
vocab_size: int = 32000,
pad_token_id: int = 2,
ignore_ids: List[int] = [],
freeze_lm: bool = True, # lm.eval()
opt_version: str = 'facebook/opt-6.7b',
task: str = 'captioning',
use_lora: bool = False,
lora_alpha: int = 32,
lora_r: int = 8,
lora_dropout: float = 0.05,
lora_target_modules: str = r'.*\.(q_proj|v_proj)',
hidden_size: int = -1,
load_in_4bit: Optional[bool] = False,
**kwargs,
):
super().__init__(**kwargs)
assert old_vocab_size > 0, 'old_vocab_size must be positive'
assert vocab_size > 0, 'vocab_size must be positive'
self.old_vocab_size = old_vocab_size
self.vocab_size = vocab_size
self.pad_token_id = pad_token_id
self.freeze_lm = freeze_lm
self.opt_version = opt_version
self.task = task
self.use_lora = use_lora
self.lora_alpha = lora_alpha
self.lora_r = lora_r
self.lora_dropout = lora_dropout
self.lora_target_modules = lora_target_modules
self.hidden_size = hidden_size
self.load_in_4bit = load_in_4bit
self.ignore_ids = ignore_ids
class CrelloModel(PreTrainedModel):
config_class = CrelloModelConfig
supports_gradient_checkpointing = True
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
self.lm.gradient_checkpointing_enable()
def __init__(self, config: CrelloModelConfig): # 显示声明config类型
super().__init__(config)
use_auth_token = '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'
self.pad_token_id = config.pad_token_id
self.args = config
opt_version = config.opt_version
print(f"Using {opt_version} for the language model.")
if 'facebook/opt' in opt_version:
self.lm = OPTForCausalLM.from_pretrained(opt_version)
word_embed_proj_dim = self.lm.config.word_embed_proj_dim
else:
if config.load_in_4bit:
print("\n would load_in_4bit")
quantization_config = BitsAndBytesConfig(
load_in_4bit=config.load_in_4bit
)
# This means: fit the entire model on the GPU:0
local_rank = int(os.environ.get("LOCAL_RANK", 0))
device_map = {"": local_rank}
torch_dtype = torch.bfloat16
else:
print("\n wouldn't load_in_4bit")
quantization_config = None
device_map = None
torch_dtype = None
self.lm = AutoModelForCausalLM.from_pretrained(
"WYBar/LLM_For_Layout_Planning",
subfolder="Meta-Llama-3-8B",
# use_auth_token=use_auth_token,
# quantization_config=quantization_config,
# device_map=device_map,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
# cache_dir="/openseg_blob/v-yanbin/GradioDemo/cache_dir",
)
# self.lm = AutoModelForCausalLM.from_pretrained(
# opt_version,
# use_auth_token=use_auth_token,
# quantization_config=quantization_config,
# device_map=device_map,
# trust_remote_code=True,
# # attn_implementation="flash_attention_2",
# # flash_attn=True,
# # flash_rotary=True,
# # fused_dense=True,
# torch_dtype=torch.bfloat16,
# )
word_embed_proj_dim = self.lm.config.hidden_size
self.config.hidden_size = self.lm.config.hidden_size
self.opt_version = opt_version
if self.args.freeze_lm:
self.lm.eval()
print("Freezing the LM.")
for param in self.lm.parameters():
param.requires_grad = False
else:
print("\n no freeze lm, so to train lm")
self.lm.train()
self.lm.config.gradient_checkpointing = True
print('resize token embeddings to match the tokenizer', config.vocab_size)
self.lm.resize_token_embeddings(config.vocab_size)
self.input_embeddings = self.lm.get_input_embeddings()
print('after token embeddings to match the tokenizer', config.vocab_size)
def train(self, mode=True):
super().train(mode=mode)
# Overwrite train() to ensure frozen models remain frozen.
if self.args.freeze_lm:
self.lm.eval()
def forward(
self,
labels: torch.LongTensor,
):
batch_size = labels.shape[0]
full_labels = labels.detach().clone()
input_embs = self.input_embeddings(labels) # (N, T, D)
input_embs_norm = ((input_embs ** 2).sum(dim=-1) ** 0.5).mean()
for ignore_id in self.config.ignore_ids:
full_labels[full_labels == ignore_id] = -100
pad_idx = []
# 获取每一个batch的 seq 长度,取值为 max_len or padding_position,记录在pad_idx
# -100 is the ignore index for cross entropy loss. https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
for label in full_labels:
for k, token in enumerate(label):
# Mask out pad tokens if they exist.
if token in [self.pad_token_id]:
label[k:] = -100 # 将后面的token都mask掉
pad_idx.append(k)
break
if k == len(label) - 1: # No padding found.
pad_idx.append(k + 1)
assert len(pad_idx) == batch_size, (len(pad_idx), batch_size)
output = self.lm( inputs_embeds=input_embs,
# input_ids=labels,
labels=full_labels,
output_hidden_states=True)
return output, full_labels, input_embs_norm
if __name__=="__main__":
config = CrelloModelConfig(
vocab_size=50265,
image_reg_token=50264,
image_gt_token=50263,
)
print("config: ",config)
model1 = CrelloModel(config)
print("\nmodel1: ",model1)
model1.save_pretrained('test')
model2 = CrelloModel.from_pretrained('test')
print("\nmodel2: ",model2)
# compare model1 and model2
state_dict1 = model1.state_dict()
state_dict2 = model2.state_dict()
assert set(state_dict1.keys()) == set(state_dict2.keys())
for k in state_dict1.keys():
assert torch.equal(state_dict1[k], state_dict2[k])
print('all parameters are equal')