Spaces:
Sleeping
Sleeping
Changes in result output + algorithm
Browse filesRemoved promotion of the words, left only restriction
Normalized values from 0 to 100
app.py
CHANGED
@@ -10,6 +10,7 @@ from collections import defaultdict, Counter
|
|
10 |
from tqdm.auto import tqdm
|
11 |
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
import time
|
|
|
13 |
|
14 |
#Loading the model
|
15 |
@st.cache_resource
|
@@ -29,7 +30,7 @@ def str_to_numpy(array_string):
|
|
29 |
|
30 |
@st.cache_data # π Add the caching decorator
|
31 |
def load_data():
|
32 |
-
vectors_df = pd.read_csv('
|
33 |
embeds = dict(enumerate(vectors_df['Embeddings']))
|
34 |
rest_names = list(vectors_df['Names'])
|
35 |
vectors_df['Weights'] = [1]*len(vectors_df)
|
@@ -58,7 +59,7 @@ def compute_cos_sim(input):
|
|
58 |
# for el in st.session_state.preferences_2:
|
59 |
# query += el
|
60 |
|
61 |
-
st.write("Your query is", query)
|
62 |
embedded_query = get_bert_embeddings(query, model, tokenizer)
|
63 |
embedded_query = embedded_query.numpy()
|
64 |
top_similar = np.array([])
|
@@ -136,7 +137,7 @@ def sort_by_rating(k):
|
|
136 |
|
137 |
return result
|
138 |
|
139 |
-
#combines 2 users preferences into 1 string
|
140 |
def get_combined_preferences(user1, user2):
|
141 |
#TODO: optimize for more users
|
142 |
shared_pref = ''
|
@@ -150,6 +151,12 @@ def get_combined_preferences(user1, user2):
|
|
150 |
|
151 |
freq_words = Counter(shared_pref.split())
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
return shared_pref, freq_words
|
154 |
|
155 |
def filter_places(restrictions):
|
@@ -167,40 +174,49 @@ def filter_places(restrictions):
|
|
167 |
|
168 |
return st.session_state.df
|
169 |
|
170 |
-
def promote_places(
|
171 |
'''
|
172 |
input type: dict()
|
173 |
a function that takes most common words, checks if descriptions fit them, increases their weight if they do
|
174 |
'''
|
175 |
#punish the weight of places that don't fit restrictions
|
176 |
-
|
177 |
-
|
|
|
|
|
178 |
|
179 |
for i in range(len(st.session_state.df)):
|
180 |
descr = [word.lower() for word in st.session_state.df['Strings'][i].split()]
|
181 |
name = st.session_state.df['Names'][i]
|
182 |
for pref in preferences:
|
183 |
-
if
|
184 |
-
st.session_state.df['Weights'][i] =
|
185 |
|
186 |
return st.session_state.df
|
187 |
|
188 |
-
def generate_results(
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
#
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
if 'preferences_1' not in st.session_state:
|
206 |
st.session_state.preferences_1 = []
|
@@ -208,6 +224,9 @@ if 'preferences_1' not in st.session_state:
|
|
208 |
if 'preferences_2' not in st.session_state:
|
209 |
st.session_state.preferences_2 = []
|
210 |
|
|
|
|
|
|
|
211 |
if 'additional_1' not in st.session_state:
|
212 |
st.session_state.additional_1 = []
|
213 |
|
@@ -224,7 +243,7 @@ if 'restrictions' not in st.session_state:
|
|
224 |
st.session_state.restrictions = []
|
225 |
|
226 |
if 'price' not in st.session_state:
|
227 |
-
|
228 |
|
229 |
if 'sort_by' not in st.session_state:
|
230 |
st.session_state.sort_by = ''
|
@@ -237,6 +256,9 @@ if 'df' not in st.session_state:
|
|
237 |
|
238 |
if 'precalculated_df' not in st.session_state:
|
239 |
st.session_state.precalculated_df = pd.DataFrame()
|
|
|
|
|
|
|
240 |
|
241 |
# Configure Streamlit page and state
|
242 |
st.title("GoTogether!")
|
@@ -253,20 +275,22 @@ css = """
|
|
253 |
border-radius: 10px;
|
254 |
display: inline-block;
|
255 |
padding: 5px 10px;
|
|
|
256 |
}
|
257 |
|
258 |
.blue-box {
|
259 |
-
background-color:
|
260 |
border: 2px solid navy;
|
261 |
border-radius: 10px;
|
262 |
display: inline-block;
|
263 |
padding: 5px 10px;
|
|
|
264 |
}
|
265 |
|
266 |
-
.
|
267 |
-
border: 2px solid #004d00; /* Dark
|
268 |
border-radius: 10px;
|
269 |
-
background-color: #4CAF50; /*
|
270 |
display: inline-block;
|
271 |
padding: 5px 10px;
|
272 |
color: #FFFFFF; /* White text color */
|
@@ -283,6 +307,16 @@ css = """
|
|
283 |
</style>
|
284 |
"""
|
285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
# options_disability_1 = st.multiselect(
|
288 |
# 'Do you need a wheelchair?',
|
@@ -290,14 +324,6 @@ css = """
|
|
290 |
|
291 |
# if options_disability_1 == 'Yes':
|
292 |
# st.session_state.restrictions.append('Wheelchair')
|
293 |
-
|
294 |
-
# price_1 = st.select_slider("Your preferred price range", options=('$', '$$', '$$$', '$$$$'), key=3)
|
295 |
-
|
296 |
-
# st.session_state.preferences_1.append(ambiance_1)
|
297 |
-
|
298 |
-
# Komplettes Beispiel fΓΌr die Verwendung der 'with'-Notation
|
299 |
-
# with st.form('my_form_1'):
|
300 |
-
# st.subheader('**User 1**')
|
301 |
|
302 |
st.markdown(css, unsafe_allow_html=True)
|
303 |
st.markdown(f'<div class="violet-box">User 1</div>', unsafe_allow_html=True)
|
@@ -337,46 +363,46 @@ additional_2 = st.text_input(label="Your description", placeholder="Anything els
|
|
337 |
|
338 |
with_kids_2 = st.checkbox('I will come with kids', key=201)
|
339 |
|
340 |
-
if len(st.session_state.preferences_1) == 0:
|
341 |
-
st.session_state.preferences_1.append(food_1)
|
342 |
-
# if food_1 in st.session_state.food:
|
343 |
-
# st.session_state.preferences_1.append(food_1)
|
344 |
-
# else:
|
345 |
-
# st.session_state.additional_1.append(food_1_o)
|
346 |
-
st.session_state.preferences_1.append(ambiance_1)
|
347 |
-
|
348 |
-
# if ambiance_1 in st.session_state.ambiance:
|
349 |
-
# st.session_state.preferences_1.append(ambiance_1)
|
350 |
-
# else:
|
351 |
-
# st.session_state.additional_1.append(ambiance_1_o)
|
352 |
-
st.session_state.restrictions.extend(options_food_1)
|
353 |
-
if with_kids:
|
354 |
-
st.session_state.restrictions.append('kids')
|
355 |
-
if additional_1:
|
356 |
-
st.session_state.preferences_1.append(additional_1)
|
357 |
-
|
358 |
-
if len(st.session_state.preferences_2) == 0:
|
359 |
-
st.session_state.preferences_2.append(food_2)
|
360 |
-
# if food_2 in st.session_state.food:
|
361 |
-
# st.session_state.preferences_2.append(food_2)
|
362 |
-
# else:
|
363 |
-
# st.session_state.additional_2.append(food_2_o)
|
364 |
-
st.session_state.preferences_2.append(ambiance_2)
|
365 |
-
# if ambiance_2 in st.session_state.ambiance:
|
366 |
-
# st.session_state.preferences_2.append(ambiance_2)
|
367 |
-
# else:
|
368 |
-
# st.session_state.additional_2.append(ambiance_2_o)
|
369 |
-
st.session_state.restrictions.extend(options_food_2)
|
370 |
-
if additional_2:
|
371 |
-
st.session_state.preferences_2.append(additional_2)
|
372 |
-
if with_kids_2:
|
373 |
-
st.session_state.restrictions.append('kids')
|
374 |
-
|
375 |
submitted = st.button('Submit!')
|
376 |
|
377 |
if submitted:
|
378 |
with st.spinner('Processing your request...'):
|
379 |
time.sleep(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
st.success("Thanks, we received your preferences!")
|
381 |
|
382 |
else:
|
@@ -389,29 +415,33 @@ if submit or (not st.session_state.precalculated_df.empty):
|
|
389 |
with st.spinner("Please wait while we are finding the best solution..."):
|
390 |
if st.session_state.precalculated_df.empty:
|
391 |
query = get_combined_preferences(st.session_state.preferences_1, st.session_state.preferences_2)
|
392 |
-
st.write("Your query is:", query[0])
|
393 |
#sort places based on restrictions
|
394 |
st.session_state.precalculated_df = filter_places(st.session_state.restrictions)
|
395 |
#sort places by elevating preferrences
|
396 |
-
|
|
|
397 |
st.session_state.precalculated_df = compute_cos_sim(query[0])
|
398 |
sort_by = st.selectbox(('Sort by:'), st.session_state.options, key=400,
|
399 |
index=st.session_state.options.index('Relevancy (default)'))
|
400 |
if sort_by:
|
401 |
st.session_state.sort_by = sort_by
|
402 |
with st.spinner(f"Sorting your results by {sort_by.lower()}..."):
|
403 |
-
|
|
|
|
|
|
|
|
|
404 |
k = 10
|
405 |
st.write(f"Here are the best {k} matches to your preferences:")
|
406 |
i = 1
|
407 |
nums = list(range(1, 11))
|
408 |
words = ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'one: :zero']
|
409 |
nums_emojis = dict(zip(nums, words))
|
410 |
-
|
411 |
-
|
412 |
condition = st.session_state.precalculated_df['Names'] == name
|
413 |
rating = st.session_state.precalculated_df.loc[condition, 'Rating'].values[0]
|
414 |
-
with st.expander(f":{nums_emojis[i]}: **{name}** **({str(rating)}**:star:): match score: {score}"):
|
415 |
|
416 |
#f":{nums_emojis[i]}: **{name}** **({str(rating)}**:star:) :", 'match score:', score
|
417 |
try:
|
@@ -419,29 +449,36 @@ if submit or (not st.session_state.precalculated_df.empty):
|
|
419 |
st.write("Price category:", st.session_state.precalculated_df.loc[condition, 'Price'].values[0])
|
420 |
except:
|
421 |
pass
|
422 |
-
|
423 |
-
# Use the condition to extract the value(s)
|
424 |
-
# description = st.session_state.precalculated_df.loc[condition, 'Strings']
|
425 |
-
# st.write(description)
|
426 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
type = [item for item in eval(st.session_state.precalculated_df.loc[condition, 'Category'].values[0])]
|
|
|
|
|
|
|
428 |
# Display HTML with the custom styles
|
429 |
for word in type:
|
430 |
st.markdown(css, unsafe_allow_html=True)
|
431 |
st.markdown(f'<div class="blue-box">{word}</div>', unsafe_allow_html=True)
|
432 |
-
|
433 |
-
|
434 |
keywords = [item[0] for item in eval(st.session_state.precalculated_df.loc[condition, 'Keywords'].values[0]) if item[1] > 2]
|
|
|
|
|
|
|
|
|
435 |
for pair in keywords[:3]:
|
436 |
st.markdown(css, unsafe_allow_html=True)
|
437 |
-
st.markdown(f'<div class="orange-box">{pair[0]} {pair[1]}</div>', unsafe_allow_html=True)
|
438 |
-
# st.write("Restaurant type:", str(type))
|
439 |
-
|
440 |
|
441 |
url = st.session_state.precalculated_df.loc[condition, 'URL'].values[0]
|
442 |
st.write(f"_Check on the_ [_map_]({url})")
|
443 |
-
|
444 |
-
st.write(
|
445 |
|
446 |
i+=1
|
447 |
|
@@ -449,7 +486,8 @@ if submit or (not st.session_state.precalculated_df.empty):
|
|
449 |
# st.markdown("<span style='font-size: 24px;'>This is larger text</span>", unsafe_allow_html=True)
|
450 |
|
451 |
|
452 |
-
|
|
|
453 |
|
454 |
stop = st.button("New search!", type='primary', key=500)
|
455 |
if stop:
|
@@ -460,8 +498,6 @@ if stop:
|
|
460 |
st.session_state.sort_by = ""
|
461 |
st.session_state.df = init_df
|
462 |
st.session_state.precalculated_df = pd.DataFrame()
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
# Propose URLs
|
467 |
-
# Show keywords instead of whole strings
|
|
|
10 |
from tqdm.auto import tqdm
|
11 |
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
import time
|
13 |
+
import random
|
14 |
|
15 |
#Loading the model
|
16 |
@st.cache_resource
|
|
|
30 |
|
31 |
@st.cache_data # π Add the caching decorator
|
32 |
def load_data():
|
33 |
+
vectors_df = pd.read_csv('filtered_restaurants_dataframe_with_embeddings.csv', encoding="utf-8")
|
34 |
embeds = dict(enumerate(vectors_df['Embeddings']))
|
35 |
rest_names = list(vectors_df['Names'])
|
36 |
vectors_df['Weights'] = [1]*len(vectors_df)
|
|
|
59 |
# for el in st.session_state.preferences_2:
|
60 |
# query += el
|
61 |
|
62 |
+
st.write("Your query for cos sim calculation is", query)
|
63 |
embedded_query = get_bert_embeddings(query, model, tokenizer)
|
64 |
embedded_query = embedded_query.numpy()
|
65 |
top_similar = np.array([])
|
|
|
137 |
|
138 |
return result
|
139 |
|
140 |
+
#combines 2 users preferences into 1 string
|
141 |
def get_combined_preferences(user1, user2):
|
142 |
#TODO: optimize for more users
|
143 |
shared_pref = ''
|
|
|
151 |
|
152 |
freq_words = Counter(shared_pref.split())
|
153 |
|
154 |
+
preferences = [pref for pref in st.session_state.preferences_1 if ((pref.capitalize() in st.session_state.food) or (pref in st.session_state.ambiance))]
|
155 |
+
preferences.extend([pref for pref in st.session_state.preferences_2 if ((pref.capitalize() in st.session_state.food) or (pref in st.session_state.ambiance))])
|
156 |
+
translator = str.maketrans('', '', string.punctuation)
|
157 |
+
preferences = [word.translate(translator) for phrase in preferences for word in phrase.split() if len(word) > 0]
|
158 |
+
st.session_state.fixed_preferences = [word.lower() for word in preferences]
|
159 |
+
|
160 |
return shared_pref, freq_words
|
161 |
|
162 |
def filter_places(restrictions):
|
|
|
174 |
|
175 |
return st.session_state.df
|
176 |
|
177 |
+
def promote_places():
|
178 |
'''
|
179 |
input type: dict()
|
180 |
a function that takes most common words, checks if descriptions fit them, increases their weight if they do
|
181 |
'''
|
182 |
#punish the weight of places that don't fit restrictions
|
183 |
+
st.write("Here are the most common preferences you provided:")
|
184 |
+
st.write(st.session_state.fixed_preferences)
|
185 |
+
|
186 |
+
preferences = st.session_state.fixed_preferences
|
187 |
|
188 |
for i in range(len(st.session_state.df)):
|
189 |
descr = [word.lower() for word in st.session_state.df['Strings'][i].split()]
|
190 |
name = st.session_state.df['Names'][i]
|
191 |
for pref in preferences:
|
192 |
+
if pref.lower() in descr:
|
193 |
+
st.session_state.df['Weights'][i] = 1.1 * st.session_state.df['Weights'][i]
|
194 |
|
195 |
return st.session_state.df
|
196 |
|
197 |
+
def generate_results():
|
198 |
+
st.session_state.results['Price'] = sort_by_price(10)
|
199 |
+
st.session_state.results['Rating'] = sort_by_rating(10)
|
200 |
+
st.session_state.results['Relevancy (default)'] = sort_by_relevancy(10)
|
201 |
+
st.session_state.results['Distance'] = sort_by_relevancy(10)
|
202 |
+
# with st.spinner("Sorting your results by relevancy..."):
|
203 |
+
|
204 |
+
def get_normalized_val(values):
|
205 |
+
if st.session_state.sort_by == 'Relevancy (default)' or st.session_state.sort_by == 'Distance':
|
206 |
+
# Find the minimum and maximum values
|
207 |
+
min_value = min(st.session_state.precalculated_df['Relevancy'])
|
208 |
+
max_value = max(st.session_state.precalculated_df['Relevancy'])
|
209 |
+
elif st.session_state.sort_by == 'Rating':
|
210 |
+
min_value = min(st.session_state.precalculated_df['Sort_rating'])
|
211 |
+
max_value = max(st.session_state.precalculated_df['Sort_rating'])
|
212 |
+
elif st.session_state.sort_by == 'Price':
|
213 |
+
min_value = min(st.session_state.precalculated_df['Sort_price'])
|
214 |
+
max_value = max(st.session_state.precalculated_df['Sort_price'])
|
215 |
+
# Define a lambda function for normalization
|
216 |
+
normalize = lambda x: 100 * round((x - min_value) / (max_value - min_value), 3)
|
217 |
+
# Use the map function to apply the lambda function to all values
|
218 |
+
normalized_results = dict(map(lambda item: (item[0], normalize(item[1])), values.items()))
|
219 |
+
return normalized_results
|
220 |
|
221 |
if 'preferences_1' not in st.session_state:
|
222 |
st.session_state.preferences_1 = []
|
|
|
224 |
if 'preferences_2' not in st.session_state:
|
225 |
st.session_state.preferences_2 = []
|
226 |
|
227 |
+
if 'fixed_preferences' not in st.session_state:
|
228 |
+
st.session_state.fixed_preferences = []
|
229 |
+
|
230 |
if 'additional_1' not in st.session_state:
|
231 |
st.session_state.additional_1 = []
|
232 |
|
|
|
243 |
st.session_state.restrictions = []
|
244 |
|
245 |
if 'price' not in st.session_state:
|
246 |
+
st.session_state.price = {'$': 2, 'β©': 2, '$$': 1, 'β©β©': 1, '$$$': 0.5, '$$$$': 0.1, "nan": 1}
|
247 |
|
248 |
if 'sort_by' not in st.session_state:
|
249 |
st.session_state.sort_by = ''
|
|
|
256 |
|
257 |
if 'precalculated_df' not in st.session_state:
|
258 |
st.session_state.precalculated_df = pd.DataFrame()
|
259 |
+
|
260 |
+
if 'results' not in st.session_state:
|
261 |
+
st.session_state.results = {}
|
262 |
|
263 |
# Configure Streamlit page and state
|
264 |
st.title("GoTogether!")
|
|
|
275 |
border-radius: 10px;
|
276 |
display: inline-block;
|
277 |
padding: 5px 10px;
|
278 |
+
margin: 0px;
|
279 |
}
|
280 |
|
281 |
.blue-box {
|
282 |
+
background-color: #0077b6;
|
283 |
border: 2px solid navy;
|
284 |
border-radius: 10px;
|
285 |
display: inline-block;
|
286 |
padding: 5px 10px;
|
287 |
+
color: white;
|
288 |
}
|
289 |
|
290 |
+
.green-box {
|
291 |
+
border: 2px solid #004d00; /* Dark green contour */
|
292 |
border-radius: 10px;
|
293 |
+
background-color: #4CAF50; /* green background */
|
294 |
display: inline-block;
|
295 |
padding: 5px 10px;
|
296 |
color: #FFFFFF; /* White text color */
|
|
|
307 |
</style>
|
308 |
"""
|
309 |
|
310 |
+
text_css = """
|
311 |
+
<style>
|
312 |
+
.text {
|
313 |
+
font-weight: bold;
|
314 |
+
color: #0077b6; /* Sea-blue text color */
|
315 |
+
margin-right: 1px;
|
316 |
+
}
|
317 |
+
</style>
|
318 |
+
"""
|
319 |
+
|
320 |
|
321 |
# options_disability_1 = st.multiselect(
|
322 |
# 'Do you need a wheelchair?',
|
|
|
324 |
|
325 |
# if options_disability_1 == 'Yes':
|
326 |
# st.session_state.restrictions.append('Wheelchair')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
st.markdown(css, unsafe_allow_html=True)
|
329 |
st.markdown(f'<div class="violet-box">User 1</div>', unsafe_allow_html=True)
|
|
|
363 |
|
364 |
with_kids_2 = st.checkbox('I will come with kids', key=201)
|
365 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
submitted = st.button('Submit!')
|
367 |
|
368 |
if submitted:
|
369 |
with st.spinner('Processing your request...'):
|
370 |
time.sleep(1)
|
371 |
+
if len(st.session_state.preferences_1) == 0:
|
372 |
+
st.session_state.preferences_1.append(food_1)
|
373 |
+
# if food_1 in st.session_state.food:
|
374 |
+
# st.session_state.preferences_1.append(food_1)
|
375 |
+
# else:
|
376 |
+
# st.session_state.additional_1.append(food_1_o)
|
377 |
+
st.session_state.preferences_1.append(ambiance_1)
|
378 |
+
|
379 |
+
# if ambiance_1 in st.session_state.ambiance:
|
380 |
+
# st.session_state.preferences_1.append(ambiance_1)
|
381 |
+
# else:
|
382 |
+
# st.session_state.additional_1.append(ambiance_1_o)
|
383 |
+
st.session_state.restrictions.extend(options_food_1)
|
384 |
+
if with_kids:
|
385 |
+
st.session_state.restrictions.append('kids')
|
386 |
+
if additional_1:
|
387 |
+
st.session_state.preferences_1.append(additional_1)
|
388 |
+
|
389 |
+
if len(st.session_state.preferences_2) == 0:
|
390 |
+
st.session_state.preferences_2.append(food_2)
|
391 |
+
# if food_2 in st.session_state.food:
|
392 |
+
# st.session_state.preferences_2.append(food_2)
|
393 |
+
# else:
|
394 |
+
# st.session_state.additional_2.append(food_2_o)
|
395 |
+
st.session_state.preferences_2.append(ambiance_2)
|
396 |
+
# if ambiance_2 in st.session_state.ambiance:
|
397 |
+
# st.session_state.preferences_2.append(ambiance_2)
|
398 |
+
# else:
|
399 |
+
# st.session_state.additional_2.append(ambiance_2_o)
|
400 |
+
st.session_state.restrictions.extend(options_food_2)
|
401 |
+
if additional_2:
|
402 |
+
st.session_state.preferences_2.append(additional_2)
|
403 |
+
if with_kids_2:
|
404 |
+
st.session_state.restrictions.append('kids')
|
405 |
+
|
406 |
st.success("Thanks, we received your preferences!")
|
407 |
|
408 |
else:
|
|
|
415 |
with st.spinner("Please wait while we are finding the best solution..."):
|
416 |
if st.session_state.precalculated_df.empty:
|
417 |
query = get_combined_preferences(st.session_state.preferences_1, st.session_state.preferences_2)
|
|
|
418 |
#sort places based on restrictions
|
419 |
st.session_state.precalculated_df = filter_places(st.session_state.restrictions)
|
420 |
#sort places by elevating preferrences
|
421 |
+
|
422 |
+
# st.session_state.precalculated_df = promote_places()
|
423 |
st.session_state.precalculated_df = compute_cos_sim(query[0])
|
424 |
sort_by = st.selectbox(('Sort by:'), st.session_state.options, key=400,
|
425 |
index=st.session_state.options.index('Relevancy (default)'))
|
426 |
if sort_by:
|
427 |
st.session_state.sort_by = sort_by
|
428 |
with st.spinner(f"Sorting your results by {sort_by.lower()}..."):
|
429 |
+
if len(st.session_state.results) == 0:
|
430 |
+
generate_results()
|
431 |
+
results = st.session_state.results[sort_by]
|
432 |
+
if sort_by == 'Distance':
|
433 |
+
st.write(":pensive: Sorry, we are still working on this option. For now, the results are sorted by relevance")
|
434 |
k = 10
|
435 |
st.write(f"Here are the best {k} matches to your preferences:")
|
436 |
i = 1
|
437 |
nums = list(range(1, 11))
|
438 |
words = ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'one: :zero']
|
439 |
nums_emojis = dict(zip(nums, words))
|
440 |
+
results = get_normalized_val(results)
|
441 |
+
for name, score in results.items():
|
442 |
condition = st.session_state.precalculated_df['Names'] == name
|
443 |
rating = st.session_state.precalculated_df.loc[condition, 'Rating'].values[0]
|
444 |
+
with st.expander(f":{nums_emojis[i]}: **{name}** **({str(rating)}**:star:): match score: {score}%"):
|
445 |
|
446 |
#f":{nums_emojis[i]}: **{name}** **({str(rating)}**:star:) :", 'match score:', score
|
447 |
try:
|
|
|
449 |
st.write("Price category:", st.session_state.precalculated_df.loc[condition, 'Price'].values[0])
|
450 |
except:
|
451 |
pass
|
|
|
|
|
|
|
|
|
452 |
|
453 |
+
descr = st.session_state.precalculated_df.loc[condition, 'Strings'].values[0]
|
454 |
+
for word in set([word.lower() for word in descr.split()]):
|
455 |
+
if word in st.session_state.fixed_preferences:
|
456 |
+
st.markdown(f'β
{word.capitalize()}')
|
457 |
+
|
458 |
+
|
459 |
+
#Restaurant category
|
460 |
type = [item for item in eval(st.session_state.precalculated_df.loc[condition, 'Category'].values[0])]
|
461 |
+
st.markdown(text_css, unsafe_allow_html=True)
|
462 |
+
st.markdown('<div class="text">Category</div>', unsafe_allow_html=True)
|
463 |
+
|
464 |
# Display HTML with the custom styles
|
465 |
for word in type:
|
466 |
st.markdown(css, unsafe_allow_html=True)
|
467 |
st.markdown(f'<div class="blue-box">{word}</div>', unsafe_allow_html=True)
|
468 |
+
|
|
|
469 |
keywords = [item[0] for item in eval(st.session_state.precalculated_df.loc[condition, 'Keywords'].values[0]) if item[1] > 2]
|
470 |
+
if len(keywords) > 0:
|
471 |
+
st.markdown(text_css, unsafe_allow_html=True)
|
472 |
+
st.markdown('<div class="text">Other users say:</div>', unsafe_allow_html=True)
|
473 |
+
|
474 |
for pair in keywords[:3]:
|
475 |
st.markdown(css, unsafe_allow_html=True)
|
476 |
+
st.markdown(f'<div class="orange-box">{pair[0]} {pair[1]}</div>', unsafe_allow_html=True)
|
|
|
|
|
477 |
|
478 |
url = st.session_state.precalculated_df.loc[condition, 'URL'].values[0]
|
479 |
st.write(f"_Check on the_ [_map_]({url})")
|
480 |
+
|
481 |
+
st.write(descr)
|
482 |
|
483 |
i+=1
|
484 |
|
|
|
486 |
# st.markdown("<span style='font-size: 24px;'>This is larger text</span>", unsafe_allow_html=True)
|
487 |
|
488 |
|
489 |
+
st.session_state.preferences_1, st.session_state.preferences_2 = [], []
|
490 |
+
st.session_state.restrictions = []
|
491 |
|
492 |
stop = st.button("New search!", type='primary', key=500)
|
493 |
if stop:
|
|
|
498 |
st.session_state.sort_by = ""
|
499 |
st.session_state.df = init_df
|
500 |
st.session_state.precalculated_df = pd.DataFrame()
|
501 |
+
st.session_state.results = {}
|
502 |
+
st.session_state.fixed_preferences = []
|
503 |
+
|
|
|
|