Spaces:
Running
Running
File size: 11,421 Bytes
79b95cf aaac38d 985ead6 79b95cf b8dee1c 79b95cf 43c5057 79b95cf b8dee1c 985ead6 b8dee1c 79b95cf b8dee1c efcd1a8 dd04276 43c5057 dd04276 0a796d2 dd04276 0a796d2 dd04276 0a796d2 dd04276 985ead6 ad4614a 985ead6 dd04276 efcd1a8 82d8948 efcd1a8 985ead6 efcd1a8 b8dee1c 985ead6 0a796d2 efcd1a8 b8dee1c 985ead6 b8dee1c 985ead6 b8dee1c 985ead6 b8dee1c efcd1a8 985ead6 b8dee1c efcd1a8 43c5057 efcd1a8 985ead6 efcd1a8 43c5057 efcd1a8 b8dee1c 79b95cf ae3b952 79b95cf b8dee1c 79b95cf 0a796d2 79b95cf ae3b952 79b95cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import os
import requests
import cv2
import re
import pytesseract
from flask import Flask, request, jsonify, render_template
from deepgram import DeepgramClient, PrerecordedOptions
from dotenv import load_dotenv
import tempfile
import json
import subprocess
import warnings
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
app = Flask(__name__)
print("APP IS RUNNING, ANIKET")
# Load the .env file
load_dotenv()
print("ENV LOADED, ANIKET")
# Fetch the API key from the .env file
API_KEY = os.getenv("FIRST_API_KEY")
DEEPGRAM_API_KEY = os.getenv("SECOND_API_KEY")
# Ensure the API key is loaded correctly
if not API_KEY:
raise ValueError("API Key not found. Make sure it is set in the .env file.")
if not DEEPGRAM_API_KEY:
raise ValueError("DEEPGRAM_API_KEY not found. Make sure it is set in the .env file.")
GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
GEMINI_API_KEY = API_KEY
@app.route("/", methods=["GET"])
def health_check():
return jsonify({"status": "success", "message": "API is running successfully!"}), 200
def transcribe_audio(wav_file_path):
"""
Transcribe audio from a video file using Deepgram API synchronously.
Args:
wav_file_path (str): Path to save the converted WAV file.
Returns:
dict: A dictionary containing status, transcript, or error message.
"""
print("Entered the transcribe_audio function")
try:
# Initialize Deepgram client
deepgram = DeepgramClient(DEEPGRAM_API_KEY)
# Open the converted WAV file
with open(wav_file_path, 'rb') as buffer_data:
payload = {'buffer': buffer_data}
# Configure transcription options
options = PrerecordedOptions(
smart_format=True, model="nova-2", language="en-US"
)
# Transcribe the audio
response = deepgram.listen.prerecorded.v('1').transcribe_file(payload, options)
# Check if the response is valid
if response:
try:
data_str = response.to_json(indent=4)
except AttributeError as e:
return {"status": "error", "message": f"Error converting response to JSON: {e}"}
# Parse the JSON string to a Python dictionary
try:
data = json.loads(data_str)
except json.JSONDecodeError as e:
return {"status": "error", "message": f"Error parsing JSON string: {e}"}
# Extract the transcript
try:
transcript = data["results"]["channels"][0]["alternatives"][0]["transcript"]
except KeyError as e:
return {"status": "error", "message": f"Error extracting transcript: {e}"}
print(f"Transcript obtained: {transcript}")
# Save the transcript to a text file
transcript_file_path = "transcript_from_transcribe_audio.txt"
with open(transcript_file_path, "w", encoding="utf-8") as transcript_file:
transcript_file.write(transcript)
return transcript
else:
return {"status": "error", "message": "Invalid response from Deepgram."}
except FileNotFoundError:
return {"status": "error", "message": f"Video file not found: {wav_file_path}"}
except Exception as e:
return {"status": "error", "message": f"Unexpected error: {e}"}
finally:
# Clean up the temporary WAV file
if os.path.exists(wav_file_path):
os.remove(wav_file_path)
print(f"Temporary WAV file deleted: {wav_file_path}")
def download_video(url, temp_video_path):
"""Download video (MP4 format) from the given URL and save it to temp_video_path."""
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(temp_video_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=1024):
f.write(chunk)
print(f"Audio downloaded successfully to {temp_video_path}")
else:
raise Exception(f"Failed to download audio, status code: {response.status_code}")
def preprocess_frame(frame):
"""Preprocess the frame for better OCR accuracy."""
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
denoised = cv2.medianBlur(gray, 3)
_, thresh = cv2.threshold(denoised, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
return thresh
def clean_ocr_text(text):
"""Clean the OCR output by removing noise and unwanted characters."""
cleaned_text = re.sub(r'[^A-Za-z0-9\s,.!?-]', '', text)
cleaned_text = '\n'.join([line.strip() for line in cleaned_text.splitlines() if len(line.strip()) > 2])
return cleaned_text
def get_information_from_video_using_OCR(video_path, interval=2):
"""Extract text from video frames using OCR and return the combined text content."""
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_interval = interval * fps
frame_count = 0
extracted_text = ""
print("Starting text extraction from video...")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_interval == 0:
timestamp = frame_count / fps # Calculate timestamp in seconds
preprocessed_frame = preprocess_frame(frame) # Preprocess the frame
# Perform OCR on the preprocessed frame
text = pytesseract.image_to_string(preprocessed_frame, lang='eng', config='--psm 6 --oem 3')
cleaned_text = clean_ocr_text(text)
if cleaned_text: # Only save non-empty results
with open(output_file, 'a', encoding='utf-8') as f:
f.write(cleaned_text + "\n\n")
print(f"Extracted text at {timestamp:.2f} seconds")
frame_count += 1
cap.release()
print("Text extraction completed.")
return extracted_text
def convert_mp4_to_wav(mp4_path, wav_path):
"""Convert an MP4 file to a WAV file."""
command = f"ffmpeg -y -i {mp4_path} -vn -acodec pcm_s16le -ar 44100 -ac 2 {wav_path}"
subprocess.run(command, shell=True, check=True)
print(f"MP4 file converted to WAV: {wav_path}")
@app.route('/process-video', methods=['POST'])
def process_video():
if 'videoUrl' not in request.json:
return jsonify({"error": "No video URL provided"}), 400
video_url = request.json['videoUrl']
temp_video_path = None
temp_wav_path = None
try:
# Step 1: Download the MP4 file from the provided URL
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
temp_video_path = temp_video_file.name
download_video(video_url, temp_video_path)
# Step 2: Get the information from the downloaded MP4 file synchronously
video_info = get_information_from_video_using_OCR(temp_video_path, interval=2)
if not video_info:
video_info = ""
# Step 3: Convert the MP4 to WAV
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_wav_file:
temp_wav_path = temp_wav_file.name
convert_mp4_to_wav(temp_video_path, temp_wav_path)
# Step 4: Transcribe the audio
audio_info = transcribe_audio(temp_wav_path)
# If no transcription is present, use an empty string
if not audio_info:
audio_info = ""
# Step 5: Generate structured recipe information using Gemini API synchronously
structured_data = query_gemini_api(video_info, audio_info)
return jsonify(structured_data)
except Exception as e:
return jsonify({"error": str(e)}), 500
finally:
# Clean up temporary video file and WAV file
if temp_video_path and os.path.exists(temp_video_path):
os.remove(temp_video_path)
print(f"Temporary video file deleted: {temp_video_path}")
if temp_wav_path and os.path.exists(temp_wav_path):
os.remove(temp_wav_path)
print(f"Temporary WAV file deleted: {temp_wav_path}")
def query_gemini_api(video_transcription, audio_transcription):
"""
Send transcription text to Gemini API and fetch structured recipe information synchronously.
"""
transcription = f"audio transcription: {audio_transcription} and video transcription: {video_transcription}"
try:
# Define the structured prompt
prompt = (
"Analyze the provided cooking video and audio transcription combined and based on the combined information extract the following structured information:\n"
"1. Recipe Name: Identify the name of the dish being prepared.\n"
"2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
"3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
"4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
"5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
"6. Nutritional Information (if inferred): Provide an approximate calorie count or macro nutritional breakdown based on the recipe cooked and your understanding, the carbs, protein and other macros.\n"
"7. Serving size: In count of people or portion size according to you and the recipe cooked e.g., 2 people, 4 people, 2 bowls, 2 cups.\n"
"8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
"9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
"There are errors and missing parts in the video transcription part, if something is not able to interpret from the video information use the audio information\n"
"If you are not able to get required information, return empty texts for the fields that I asked above instead of giving any other text response."
f"Text: {transcription}\n"
)
# Prepare the payload and headers
payload = {
"contents": [
{
"parts": [
{"text": prompt}
]
}
]
}
headers = {"Content-Type": "application/json"}
# Send request to Gemini API synchronously
response = requests.post(
f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
json=payload,
headers=headers,
)
# Raise error if response code is not 200
response.raise_for_status()
data = response.json()
return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
except requests.exceptions.RequestException as e:
print(f"Error querying Gemini API: {e}")
return {"error": str(e)}
if __name__ == '__main__':
app.run(debug=True)
|