Spaces:
Runtime error
Runtime error
File size: 5,640 Bytes
a1d4102 bb5127a a1d4102 dcb7053 a1d4102 bb5127a a1d4102 bb5127a a1d4102 bb5127a 7f29d04 bb5127a 7f29d04 bb5127a 7f29d04 bb5127a 7f29d04 a1d4102 7f29d04 bb5127a a1d4102 bb5127a a1d4102 7f29d04 a1d4102 bb5127a a1d4102 dcb7053 7f29d04 a1d4102 7f29d04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import gradio as gr
import hopsworks
import joblib
import pandas as pd
features = ['work_year',
'experience_level',
'company_size',
'eur',
'gbp',
'usd',
'engineer',
'scientist',
'research',
'analyst',
'analytics_engineer',
'applied_scientist',
'bi_developer',
'business_intelligence_analyst',
'business_intelligence_engineer',
'data_analyst',
'data_architect',
'data_engineer',
'data_manager',
'data_science_consultant',
'data_science_manager',
'data_scientist',
'ml_engineer',
'machine_learning_engineer',
'machine_learning_scientist',
'research_analyst',
'research_engineer',
'research_scientist',
'gdp',
'cpi']
labels = ['(16454.999, 122000.0]', '(122000.0, 170000.0]', '(170000.0, 329700.0]']
project = hopsworks.login()
fs = project.get_feature_store()
mr = project.get_model_registry()
model = mr.get_model("salary_model", version=5)
model_dir = model.download()
model = joblib.load(model_dir + "/model.pkl")
print("Model downloaded")
import requests
def get_gdp_by_country_code(country_code, year=2023, index='FP.CPI.TOTL'):
# World Bank API endpoint for GDP data
api_url = f'http://api.worldbank.org/v2/country/{country_code}/indicator/{index}?data={year}&format=json'
# Make a GET request to the API
response = requests.get(api_url)
# Check if the request was successful (status code 200)
if response.status_code == 200:
# Parse the JSON response
data = response.json()
# Extract the GDP value from the response
gdp_value = data[1][0]['value'] if data[1] else None
return gdp_value
else:
# If the request was not successful, print an error message
print(f"Error: Unable to fetch data. Status code: {response.status_code}")
return None
def salary(work_year,
experience_level,
company_size,
currency,
job_title,
country)-> str:
jobs = ['analytics_engineer',
'applied_scientist',
'bi_developer',
'business_intelligence_analyst',
'business_intelligence_engineer',
'data_analyst',
'data_architect',
'data_engineer',
'data_manager',
'data_science_consultant',
'data_science_manager',
'data_scientist',
'ml_engineer',
'machine_learning_engineer',
'machine_learning_scientist',
'research_analyst',
'research_engineer',
'research_scientist']
jobs_flag ={}
for name in jobs:
if name == job_title.lower().replace(' ', '_'):
jobs_flag[name] = True
else:
jobs_flag[name] = False
role = [
'engineer',
'scientist',
'research',
'analyst'
]
role_flag = {}
for name in role:
if name in job_title.lower():
role_flag[name]= True
else:
role_flag[name] = False
currency_flag = {
'eur': False,
'gbp': False,
'usd': False
}
currency_flag[currency.lower()] = True
company_size_dic = {
'S': 0,
'M': 1,
'L': 2,
}
experience_level_map = {
'EN': 0,
'MI': 1,
'SE': 2,
'EX': 3
}
params = {}
params['work_year'] = work_year
params['experience_level'] = experience_level_map[experience_level]
params['company_size'] = company_size_dic[company_size]
params.update(currency_flag)
params.update(role_flag)
params.update(jobs_flag)
params['gdp'] = get_gdp_by_country_code(country, work_year, 'NY.GDP.MKTP.CD')
params['cpi'] = get_gdp_by_country_code(country, work_year, 'FP.CPI.TOTL')
df = pd.DataFrame([params])
print("Predicting")
print(df)
print(df.columns)
res = model.predict(df)
print(f"{labels[res[0]]} $")
return f"{labels[res[0]]} $"
job_title_options = ['analytics_engineer',
'applied_scientist',
'bi_developer',
'business_intelligence_analyst',
'business_intelligence_engineer',
'data_analyst',
'data_architect',
'data_engineer',
'data_manager',
'data_science_consultant',
'data_science_manager',
'data_scientist',
'ml_engineer',
'machine_learning_engineer',
'machine_learning_scientist',
'research_analyst',
'research_engineer',
'research_scientist']
demo = gr.Interface(
fn=salary,
title="Salary prediction",
description="Prediction of the salary in USD",
allow_flagging="never",
inputs=[
gr.components.Number(label='work_year'),
gr.components.Radio(label='experience_level', choices=['EN', 'MI', 'SE', 'EX']),
gr.components.Radio(label='company_size', choices=['S', 'M', 'L']),
gr.components.Radio(label='currency', choices=['EUR', 'GBP', 'USD']),
gr.components.Dropdown(label='job_title', choices=job_title_options),
gr.components.Textbox(label='country', info='2 letter code', value='US')
],
outputs=gr.Text())
demo.launch(debug=True, share=True)
|