Spaces:
Runtime error
Runtime error
File size: 10,948 Bytes
8ccf632 81b26b5 a60a488 06f0278 8ccf632 63f17a8 8ccf632 06f0278 8ccf632 a60a488 63f17a8 a60a488 63f17a8 f2a3e1c 155ee81 f2a3e1c a60a488 f2a3e1c a60a488 8ccf632 a60a488 63f17a8 54192f0 63f17a8 a60a488 8ccf632 63f17a8 f2a3e1c a60a488 f2a3e1c a60a488 f2a3e1c 63f17a8 8ccf632 a60a488 155ee81 a60a488 8ccf632 f8d6556 63f17a8 8ccf632 a60a488 f8d6556 a60a488 f8d6556 8ccf632 f8d6556 8ccf632 f8d6556 f2a3e1c f8d6556 63f17a8 f8d6556 a60a488 f8d6556 8ccf632 a60a488 8ccf632 a60a488 8ccf632 f8d6556 8ccf632 f8d6556 8ccf632 f8d6556 8ccf632 f8d6556 8ccf632 f8d6556 a60a488 f8d6556 63f17a8 a60a488 63f17a8 8ccf632 9aa8809 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
STYLE_OPTIONS = {
"Vintage": "vintage style, retro aesthetic, aged appearance",
"Realistic": "photorealistic, detailed, true-to-life",
"Geometric": "geometric shapes, precise lines, mathematical patterns",
"Abstract": "abstract design, non-representational, artistic",
"Minimalist": "simple, clean lines, understated",
"Bohemian": "boho style, free-spirited, eclectic",
"Traditional": "classical design, timeless patterns",
"Contemporary": "modern style, current trends"
}
FABRIC_OPTIONS = {
"None": "",
"Cotton": "cotton textile texture, natural fiber appearance",
"Silk": "silk fabric texture, smooth and lustrous",
"Linen": "linen texture, natural weave pattern",
"Velvet": "velvet texture, plush surface",
"Canvas": "canvas texture, sturdy weave pattern",
"Wool": "wool texture, natural fiber appearance"
}
def enhance_prompt_for_pattern(prompt, style, fabric):
"""Add specific terms to ensure seamless, tileable patterns with style and fabric considerations."""
pattern_terms = [
"seamless pattern",
"tileable textile design",
"repeating pattern",
"high-quality fabric design",
"continuous pattern",
]
enhanced_prompt = f"{prompt}, {random.choice(pattern_terms)}"
if style and style != "None":
enhanced_prompt += f", {STYLE_OPTIONS[style]}"
if fabric and fabric != "None":
enhanced_prompt += f", {FABRIC_OPTIONS[fabric]}"
enhanced_prompt += ", suitable for textile printing, high-quality fabric design, seamless edges"
return enhanced_prompt
def add_logo(image):
"""Add logo to the bottom right corner of the image."""
try:
logo = Image.open('logo.png')
# Resize logo to be proportional to image size (e.g., 10% of image width)
logo_width = int(image.size[0] * 0.2)
logo_ratio = logo.size[1] / logo.size[0]
logo_height = int(logo_width * logo_ratio)
logo = logo.resize((logo_width, logo_height), Image.Resampling.LANCZOS)
# If logo has alpha channel, create a copy of the image to paste onto
if logo.mode == 'RGBA':
temp_img = image.copy()
# Calculate position for bottom right corner with small padding
position = (image.size[0] - logo_width - 20, image.size[1] - logo_height - 20)
temp_img.paste(logo, position, logo)
return temp_img
else:
# For non-transparent logos
temp_img = image.copy()
position = (image.size[0] - logo_width - 20, image.size[1] - logo_height - 20)
temp_img.paste(logo, position)
return temp_img
except Exception as e:
print(f"Error adding logo: {e}")
return image
def create_fabric_preview(image):
"""Create a fabric preview by tiling the pattern."""
# Create a 4x2 grid of the pattern
width, height = image.size
preview = Image.new('RGB', (width * 4, height * 2))
for y in range(2):
for x in range(4):
preview.paste(image, (x * width, y * height))
# Add logo to the preview
preview = add_logo(preview)
return preview
@spaces.GPU()
def infer(prompt, style, fabric, seed=42, randomize_seed=False, width=1024, height=1024,
num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
enhanced_prompt = enhance_prompt_for_pattern(prompt, style, fabric)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=enhanced_prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
# Convert to PIL Image for processing
pil_image = image
if not isinstance(image, Image.Image):
pil_image = Image.fromarray(np.uint8(image))
# Add logo to single pattern
pattern_with_logo = add_logo(pil_image)
# Create fabric preview
fabric_preview = create_fabric_preview(pil_image)
return pattern_with_logo, fabric_preview, seed
examples = [
["geometric Art Deco shapes in gold and navy", "Geometric", "None"],
["abstract watercolor spots in pastel colors", "Abstract", "Silk"],
["traditional paisley design in earth tones", "Traditional", "Linen"],
["delicate floral motifs with small roses and leaves tileable textile design", "Vintage", "Cotton"],
["modern minimalist lines and circles", "Minimalist", "Canvas"],
]
# Enhanced CSS for better visual design and mobile responsiveness
css = """
#col-container {
margin: 0 auto;
max-width: 1200px !important;
padding: 20px;
}
.main-title {
text-align: center;
color: #2d3748;
margin-bottom: 1rem;
font-family: 'Poppins', sans-serif;
}
.subtitle {
text-align: center;
color: #4a5568;
margin-bottom: 2rem;
font-family: 'Inter', sans-serif;
font-size: 0.95rem;
line-height: 1.5;
}
.pattern-input {
border: 2px solid #e2e8f0;
border-radius: 10px;
padding: 12px !important;
margin-bottom: 1rem !important;
font-size: 1rem;
transition: all 0.3s ease;
}
.pattern-input:focus {
border-color: #4299e1;
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.1);
}
.generate-button {
background-color: #4299e1 !important;
color: white !important;
padding: 12px 24px !important;
border-radius: 8px !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
}
.generate-button:hover {
background-color: #3182ce !important;
transform: translateY(-1px);
}
.result-image {
border-radius: 12px;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
margin-top: 1rem;
}
.advanced-settings {
margin-top: 1.5rem;
border: 1px solid #e2e8f0;
border-radius: 10px;
padding: 1rem;
}
.examples-section {
margin-top: 2rem;
padding: 1rem;
background: #f7fafc;
border-radius: 10px;
border: none;
}
.preview-section {
margin-top: 1rem;
padding: 1rem;
background: #ffffff;
border-radius: 10px;
}
/* Mobile Responsiveness */
@media (max-width: 768px) {
#col-container {
padding: 12px;
}
.main-title {
font-size: 1.5rem;
}
.subtitle {
font-size: 0.9rem;
}
.pattern-input {
font-size: 0.9rem;
}
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
# 🎨 Professional Textile Pattern Generator
""",
elem_classes=["main-title"]
)
gr.Markdown(
"""
Create professional-grade, seamless patterns for textile manufacturing.
Design unique patterns with style and fabric texture controls,
perfect for commercial textile production and fashion design.
""",
elem_classes=["subtitle"]
)
with gr.Row():
with gr.Column(scale=2):
prompt = gr.Text(
label="Pattern Description",
show_label=False,
max_lines=1,
placeholder="Describe your dream pattern (e.g., 'geometric Art Deco shapes in gold and navy')",
container=False,
elem_classes=["pattern-input"]
)
with gr.Column(scale=1):
style = gr.Dropdown(
choices=list(STYLE_OPTIONS.keys()),
label="Style",
value="None"
)
with gr.Column(scale=1):
fabric = gr.Dropdown(
choices=list(FABRIC_OPTIONS.keys()),
label="Fabric Texture",
value="None"
)
with gr.Column(scale=0.5):
run_button = gr.Button(
"✨ Generate",
elem_classes=["generate-button"]
)
with gr.Row():
with gr.Column():
pattern = gr.Image(
label="Generated Pattern",
show_label=True,
elem_classes=["result-image"]
)
with gr.Column():
preview = gr.Image(
label="Fabric Preview",
show_label=True,
elem_classes=["result-image"]
)
with gr.Accordion("🔧 Advanced Settings", open=False):
with gr.Group(elem_classes=["advanced-settings"]):
seed = gr.Slider(
label="Pattern Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(
label="Randomize Pattern",
value=True
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
num_inference_steps = gr.Slider(
label="Generation Quality (Steps)",
minimum=1,
maximum=50,
step=1,
value=4,
)
with gr.Group(elem_classes=["examples-section"]):
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt, style, fabric],
outputs=[pattern, preview, seed],
cache_examples=True
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, style, fabric, seed, randomize_seed, width, height, num_inference_steps],
outputs=[pattern, preview, seed]
)
demo.launch() |