File size: 10,948 Bytes
8ccf632
 
 
 
 
81b26b5
a60a488
06f0278
 
8ccf632
 
63f17a8
 
 
 
8ccf632
 
06f0278
8ccf632
a60a488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63f17a8
 
 
 
 
 
 
a60a488
 
 
 
 
 
 
 
 
 
63f17a8
 
f2a3e1c
 
 
 
 
155ee81
f2a3e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a60a488
 
 
 
 
 
 
 
 
 
f2a3e1c
 
a60a488
 
8ccf632
a60a488
63f17a8
54192f0
 
63f17a8
a60a488
8ccf632
 
63f17a8
 
 
 
 
 
 
 
f2a3e1c
 
 
 
 
 
 
 
a60a488
f2a3e1c
a60a488
f2a3e1c
63f17a8
8ccf632
a60a488
 
 
155ee81
a60a488
8ccf632
 
f8d6556
63f17a8
8ccf632
 
a60a488
f8d6556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a60a488
 
 
 
 
 
 
 
 
 
 
 
 
f8d6556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ccf632
 
f8d6556
8ccf632
f8d6556
 
f2a3e1c
f8d6556
 
 
63f17a8
f8d6556
 
a60a488
 
 
f8d6556
 
 
8ccf632
 
a60a488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ccf632
a60a488
 
 
 
 
 
 
 
 
 
 
 
 
 
8ccf632
f8d6556
 
 
 
 
 
 
 
8ccf632
f8d6556
 
 
8ccf632
f8d6556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ccf632
f8d6556
8ccf632
 
 
 
 
 
f8d6556
 
 
 
a60a488
 
 
f8d6556
63f17a8
 
 
 
a60a488
 
63f17a8
8ccf632
9aa8809
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-schnell",
    torch_dtype=dtype
).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

STYLE_OPTIONS = {
    "Vintage": "vintage style, retro aesthetic, aged appearance",
    "Realistic": "photorealistic, detailed, true-to-life",
    "Geometric": "geometric shapes, precise lines, mathematical patterns",
    "Abstract": "abstract design, non-representational, artistic",
    "Minimalist": "simple, clean lines, understated",
    "Bohemian": "boho style, free-spirited, eclectic",
    "Traditional": "classical design, timeless patterns",
    "Contemporary": "modern style, current trends"
}

FABRIC_OPTIONS = {
    "None": "",
    "Cotton": "cotton textile texture, natural fiber appearance",
    "Silk": "silk fabric texture, smooth and lustrous",
    "Linen": "linen texture, natural weave pattern",
    "Velvet": "velvet texture, plush surface",
    "Canvas": "canvas texture, sturdy weave pattern",
    "Wool": "wool texture, natural fiber appearance"
}

def enhance_prompt_for_pattern(prompt, style, fabric):
    """Add specific terms to ensure seamless, tileable patterns with style and fabric considerations."""
    pattern_terms = [
        "seamless pattern",
        "tileable textile design",
        "repeating pattern",
        "high-quality fabric design",
        "continuous pattern",
    ]
    
    enhanced_prompt = f"{prompt}, {random.choice(pattern_terms)}"
    
    if style and style != "None":
        enhanced_prompt += f", {STYLE_OPTIONS[style]}"
    
    if fabric and fabric != "None":
        enhanced_prompt += f", {FABRIC_OPTIONS[fabric]}"
    
    enhanced_prompt += ", suitable for textile printing, high-quality fabric design, seamless edges"
    return enhanced_prompt

def add_logo(image):
    """Add logo to the bottom right corner of the image."""
    try:
        logo = Image.open('logo.png')
        # Resize logo to be proportional to image size (e.g., 10% of image width)
        logo_width = int(image.size[0] * 0.2)
        logo_ratio = logo.size[1] / logo.size[0]
        logo_height = int(logo_width * logo_ratio)
        logo = logo.resize((logo_width, logo_height), Image.Resampling.LANCZOS)
        
        # If logo has alpha channel, create a copy of the image to paste onto
        if logo.mode == 'RGBA':
            temp_img = image.copy()
            # Calculate position for bottom right corner with small padding
            position = (image.size[0] - logo_width - 20, image.size[1] - logo_height - 20)
            temp_img.paste(logo, position, logo)
            return temp_img
        else:
            # For non-transparent logos
            temp_img = image.copy()
            position = (image.size[0] - logo_width - 20, image.size[1] - logo_height - 20)
            temp_img.paste(logo, position)
            return temp_img
    except Exception as e:
        print(f"Error adding logo: {e}")
        return image

def create_fabric_preview(image):
    """Create a fabric preview by tiling the pattern."""
    # Create a 4x2 grid of the pattern
    width, height = image.size
    preview = Image.new('RGB', (width * 4, height * 2))
    
    for y in range(2):
        for x in range(4):
            preview.paste(image, (x * width, y * height))
    
    # Add logo to the preview
    preview = add_logo(preview)
    return preview

@spaces.GPU()
def infer(prompt, style, fabric, seed=42, randomize_seed=False, width=1024, height=1024, 
          num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    enhanced_prompt = enhance_prompt_for_pattern(prompt, style, fabric)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        prompt=enhanced_prompt,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=0.0
    ).images[0]
    
    # Convert to PIL Image for processing
    pil_image = image
    if not isinstance(image, Image.Image):
        pil_image = Image.fromarray(np.uint8(image))
    
    # Add logo to single pattern
    pattern_with_logo = add_logo(pil_image)
    
    # Create fabric preview
    fabric_preview = create_fabric_preview(pil_image)
    
    return pattern_with_logo, fabric_preview, seed

examples = [
    ["geometric Art Deco shapes in gold and navy", "Geometric", "None"],
    ["abstract watercolor spots in pastel colors", "Abstract", "Silk"],
    ["traditional paisley design in earth tones", "Traditional", "Linen"],
    ["delicate floral motifs with small roses and leaves tileable textile design", "Vintage", "Cotton"],
    ["modern minimalist lines and circles", "Minimalist", "Canvas"],
]

# Enhanced CSS for better visual design and mobile responsiveness
css = """
#col-container {
    margin: 0 auto;
    max-width: 1200px !important;
    padding: 20px;
}
.main-title {
    text-align: center;
    color: #2d3748;
    margin-bottom: 1rem;
    font-family: 'Poppins', sans-serif;
}
.subtitle {
    text-align: center;
    color: #4a5568;
    margin-bottom: 2rem;
    font-family: 'Inter', sans-serif;
    font-size: 0.95rem;
    line-height: 1.5;
}
.pattern-input {
    border: 2px solid #e2e8f0;
    border-radius: 10px;
    padding: 12px !important;
    margin-bottom: 1rem !important;
    font-size: 1rem;
    transition: all 0.3s ease;
}
.pattern-input:focus {
    border-color: #4299e1;
    box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.1);
}
.generate-button {
    background-color: #4299e1 !important;
    color: white !important;
    padding: 12px 24px !important;
    border-radius: 8px !important;
    font-weight: 600 !important;
    transition: all 0.3s ease !important;
}
.generate-button:hover {
    background-color: #3182ce !important;
    transform: translateY(-1px);
}
.result-image {
    border-radius: 12px;
    box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
    margin-top: 1rem;
}
.advanced-settings {
    margin-top: 1.5rem;
    border: 1px solid #e2e8f0;
    border-radius: 10px;
    padding: 1rem;
}
.examples-section {
    margin-top: 2rem;
    padding: 1rem;
    background: #f7fafc;
    border-radius: 10px;
    border: none;
}
.preview-section {
    margin-top: 1rem;
    padding: 1rem;
    background: #ffffff;
    border-radius: 10px;
}
/* Mobile Responsiveness */
@media (max-width: 768px) {
    #col-container {
        padding: 12px;
    }
    
    .main-title {
        font-size: 1.5rem;
    }
    
    .subtitle {
        font-size: 0.9rem;
    }
    
    .pattern-input {
        font-size: 0.9rem;
    }
}
"""

with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            """
            # 🎨 Professional Textile Pattern Generator
            """,
            elem_classes=["main-title"]
        )
        
        gr.Markdown(
            """
            Create professional-grade, seamless patterns for textile manufacturing. 
            Design unique patterns with style and fabric texture controls, 
            perfect for commercial textile production and fashion design.
            """,
            elem_classes=["subtitle"]
        )
        
        with gr.Row():
            with gr.Column(scale=2):
                prompt = gr.Text(
                    label="Pattern Description",
                    show_label=False,
                    max_lines=1,
                    placeholder="Describe your dream pattern (e.g., 'geometric Art Deco shapes in gold and navy')",
                    container=False,
                    elem_classes=["pattern-input"]
                )
            
            with gr.Column(scale=1):
                style = gr.Dropdown(
                    choices=list(STYLE_OPTIONS.keys()),
                    label="Style",
                    value="None"
                )
            
            with gr.Column(scale=1):
                fabric = gr.Dropdown(
                    choices=list(FABRIC_OPTIONS.keys()),
                    label="Fabric Texture",
                    value="None"
                )
            
            with gr.Column(scale=0.5):
                run_button = gr.Button(
                    "✨ Generate",
                    elem_classes=["generate-button"]
                )
        
        with gr.Row():
            with gr.Column():
                pattern = gr.Image(
                    label="Generated Pattern",
                    show_label=True,
                    elem_classes=["result-image"]
                )
            
            with gr.Column():
                preview = gr.Image(
                    label="Fabric Preview",
                    show_label=True,
                    elem_classes=["result-image"]
                )
        
        with gr.Accordion("🔧 Advanced Settings", open=False):
            with gr.Group(elem_classes=["advanced-settings"]):
                seed = gr.Slider(
                    label="Pattern Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(
                    label="Randomize Pattern",
                    value=True
                )
                
                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                
                num_inference_steps = gr.Slider(
                    label="Generation Quality (Steps)",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )
        
        with gr.Group(elem_classes=["examples-section"]):
            gr.Examples(
                examples=examples,
                fn=infer,
                inputs=[prompt, style, fabric],
                outputs=[pattern, preview, seed],
                cache_examples=True
            )
        
        gr.on(
            triggers=[run_button.click, prompt.submit],
            fn=infer,
            inputs=[prompt, style, fabric, seed, randomize_seed, width, height, num_inference_steps],
            outputs=[pattern, preview, seed]
        )

demo.launch()