Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = DiffusionPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", | |
torch_dtype=dtype | |
).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def enhance_prompt_for_pattern(prompt): | |
"""Add specific terms to ensure seamless, tileable patterns.""" | |
pattern_terms = [ | |
"seamless pattern", | |
"tileable textile design", | |
"repeating pattern", | |
"high-quality fabric design", | |
"continuous pattern", | |
] | |
enhanced_prompt = f"{prompt}, {random.choice(pattern_terms)}, suitable for textile printing, high-quality fabric design, seamless edges" | |
return enhanced_prompt | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, | |
num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
enhanced_prompt = enhance_prompt_for_pattern(prompt) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=enhanced_prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=0.0 | |
).images[0] | |
return image, seed | |
examples = [ | |
"geometric Art Deco shapes in gold and navy", | |
"delicate floral motifs with small roses and leaves", | |
"abstract watercolor spots in pastel colors", | |
"traditional paisley design in earth tones", | |
"modern minimalist lines and circles", | |
] | |
# Enhanced CSS for better visual design and mobile responsiveness | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 800px !important; | |
padding: 20px; | |
} | |
.main-title { | |
text-align: center; | |
color: #2d3748; | |
margin-bottom: 1rem; | |
font-family: 'Poppins', sans-serif; | |
} | |
.subtitle { | |
text-align: center; | |
color: #4a5568; | |
margin-bottom: 2rem; | |
font-family: 'Inter', sans-serif; | |
font-size: 0.95rem; | |
line-height: 1.5; | |
} | |
.pattern-input { | |
border: 2px solid #e2e8f0; | |
border-radius: 10px; | |
padding: 12px !important; | |
margin-bottom: 1rem !important; | |
font-size: 1rem; | |
transition: all 0.3s ease; | |
} | |
.pattern-input:focus { | |
border-color: #4299e1; | |
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.1); | |
} | |
.generate-button { | |
background-color: #4299e1 !important; | |
color: white !important; | |
padding: 12px 24px !important; | |
border-radius: 8px !important; | |
font-weight: 600 !important; | |
transition: all 0.3s ease !important; | |
} | |
.generate-button:hover { | |
background-color: #3182ce !important; | |
transform: translateY(-1px); | |
} | |
.result-image { | |
border-radius: 12px; | |
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); | |
margin-top: 1rem; | |
} | |
.advanced-settings { | |
margin-top: 1.5rem; | |
border: 1px solid #e2e8f0; | |
border-radius: 10px; | |
padding: 1rem; | |
} | |
/* Mobile Responsiveness */ | |
@media (max-width: 768px) { | |
#col-container { | |
padding: 12px; | |
} | |
.main-title { | |
font-size: 1.5rem; | |
} | |
.subtitle { | |
font-size: 0.9rem; | |
} | |
.pattern-input { | |
font-size: 0.9rem; | |
} | |
} | |
/* Custom styling for examples section */ | |
.examples-section { | |
margin-top: 2rem; | |
padding: 1rem; | |
background: #f7fafc; | |
border-radius: 10px; | |
} | |
""" | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown( | |
""" | |
# 🎨 Deradh's AI Pattern Master | |
""", | |
elem_classes=["main-title"] | |
) | |
gr.Markdown( | |
""" | |
Create beautiful, seamless patterns for your textile designs using AI. | |
Simply describe your desired pattern, and watch as AI brings your vision to life with | |
professional-quality, repeatable patterns perfect for fabrics and materials. | |
""", | |
elem_classes=["subtitle"] | |
) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Pattern Description", | |
show_label=False, | |
max_lines=1, | |
placeholder="Describe your dream pattern (e.g., 'geometric Art Deco shapes in gold and navy')", | |
container=False, | |
elem_classes=["pattern-input"] | |
) | |
run_button = gr.Button( | |
"✨ Generate", | |
scale=0, | |
elem_classes=["generate-button"] | |
) | |
result = gr.Image( | |
label="Your Generated Pattern", | |
show_label=True, | |
elem_classes=["result-image"] | |
) | |
with gr.Accordion("🔧 Advanced Settings", open=False): | |
with gr.Group(elem_classes=["advanced-settings"]): | |
seed = gr.Slider( | |
label="Pattern Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox( | |
label="Randomize Pattern", | |
value=True | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
num_inference_steps = gr.Slider( | |
label="Generation Quality (Steps)", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
with gr.Group(elem_classes=["examples-section"]): | |
gr.Markdown("### 💫 Try These Examples") | |
gr.Examples( | |
examples=examples, | |
fn=infer, | |
inputs=[prompt], | |
outputs=[result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps], | |
outputs=[result, seed] | |
) | |
demo.launch() |