Spaces:
Runtime error
Runtime error
File size: 4,373 Bytes
8ccf632 81b26b5 06f0278 8ccf632 63f17a8 8ccf632 06f0278 8ccf632 63f17a8 8ccf632 63f17a8 54192f0 63f17a8 8ccf632 63f17a8 8ccf632 63f17a8 8ccf632 63f17a8 8ccf632 63f17a8 8ccf632 e2944a6 8ccf632 63f17a8 8ccf632 63f17a8 8ccf632 63f17a8 8ccf632 63f17a8 8ccf632 63f17a8 8ccf632 63f17a8 8ccf632 63f17a8 8ccf632 9aa8809 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize the model
pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Pattern-specific prompt engineering
def enhance_prompt_for_pattern(prompt):
"""Add specific terms to ensure seamless, tileable patterns."""
pattern_terms = [
"seamless pattern",
"tileable textile design",
"repeating pattern",
"high-quality fabric design",
"continuous pattern",
]
enhanced_prompt = f"{prompt}, {random.choice(pattern_terms)}, suitable for textile printing, high-quality fabric design, seamless edges"
return enhanced_prompt
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024,
num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Enhance the prompt for pattern generation
enhanced_prompt = enhance_prompt_for_pattern(prompt)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=enhanced_prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
return image, seed
# Example prompts specifically for pattern generation
examples = [
"geometric Art Deco shapes in gold and navy",
"delicate floral motifs with small roses and leaves",
"abstract watercolor spots in pastel colors",
"traditional paisley design in earth tones",
"modern minimalist lines and circles",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# Deradh's AI Pattern Master
### Create seamless, tileable patterns for high-quality textile designs
This tool specializes in generating patterns that can be used for fabric printing and textile design.
Each pattern is optimized to be seamless and repeatable.
""")
with gr.Row():
prompt = gr.Text(
label="Pattern Description",
show_label=False,
max_lines=1,
placeholder="Describe your desired pattern (e.g., 'geometric Art Deco shapes in gold and navy')",
container=False,
)
run_button = gr.Button("Generate Pattern", scale=0)
result = gr.Image(label="Generated Pattern", show_label=True)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed]
)
demo.launch() |