Spaces:
Runtime error
Runtime error
File size: 9,219 Bytes
670fde4 8ccf632 81b26b5 9693fed 670fde4 06f0278 670fde4 dfb11c1 670fde4 dfb11c1 670fde4 dfb11c1 670fde4 dfb11c1 670fde4 dfb11c1 670fde4 dfb11c1 670fde4 dfb11c1 670fde4 dfb11c1 670fde4 dfb11c1 dd082a2 670fde4 dd082a2 6072191 dd082a2 670fde4 dfb11c1 670fde4 dd082a2 670fde4 dd082a2 670fde4 8e31d11 670fde4 dd082a2 670fde4 dd082a2 670fde4 dd082a2 8ccf632 9693fed 54192f0 63f17a8 59a7070 8ccf632 9693fed 63f17a8 670fde4 9693fed 63f17a8 8ccf632 9693fed 8e31d11 59a7070 8e31d11 8ccf632 63f17a8 8ccf632 59a7070 f8d6556 59a7070 f8d6556 9693fed 8ccf632 f8d6556 8ccf632 f8d6556 dfb11c1 f8d6556 63f17a8 f8d6556 dfb11c1 59a7070 f8d6556 8ccf632 59a7070 9693fed f8d6556 8ccf632 9693fed 8ccf632 f8d6556 59a7070 f8d6556 59a7070 f8d6556 8ccf632 f8d6556 59a7070 f8d6556 8ccf632 f8d6556 8ccf632 f8d6556 8ccf632 59a7070 9693fed 59a7070 63f17a8 9693fed 63f17a8 8ccf632 9aa8809 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
mport gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
import io
from PIL import ImageEnhance
def get_edge_color(image):
"""
Get a random color from the edge of the image
"""
# Convert to numpy array
img_array = np.array(image)
# Get pixels from all edges
top_edge = img_array[0, :, :]
bottom_edge = img_array[-1, :, :]
left_edge = img_array[:, 0, :]
right_edge = img_array[:, -1, :]
# Combine all edge pixels
edge_pixels = np.concatenate([top_edge, bottom_edge, left_edge, right_edge])
# Pick a random edge pixel
random_edge_color = tuple(edge_pixels[random.randint(0, len(edge_pixels)-1)])
return random_edge_color
def color_match_tshirt(tshirt_image, target_color, threshold=30):
"""
Change white/near-white areas of the t-shirt to the target color
"""
# Convert to numpy array
img_array = np.array(tshirt_image)
# Create a mask for near-white pixels
white_mask = np.all(np.abs(img_array - [255, 255, 255]) < threshold, axis=2)
# Apply the new color to masked areas
img_array[white_mask] = target_color
return Image.fromarray(img_array)
def add_logo_watermark(image, logo_path='logo.png', size_percentage=0.2):
"""
Add a logo watermark to the bottom right corner
"""
# Open and resize logo
logo = Image.open(logo_path)
# Calculate new logo size (20% of main image width)
new_width = int(image.size[0] * size_percentage)
new_height = int(new_width * logo.size[1] / logo.size[0])
logo = logo.resize((new_width, new_height), Image.Resampling.LANCZOS)
# If logo has transparency, use it as mask
if logo.mode == 'RGBA':
mask = logo.split()[3]
else:
mask = None
# Calculate position (bottom right corner with padding)
position = (image.size[0] - logo.size[0] - 10,
image.size[1] - logo.size[1] - 10)
# Create a copy of the image
result = image.copy()
result.paste(logo, position, mask)
return result
def create_tshirt_preview(design_image, tshirt_color="white"):
"""
Overlay the design onto the t-shirt template with color matching
"""
# Load the template t-shirt image
tshirt = Image.open('image.jpeg')
tshirt_width, tshirt_height = tshirt.size
# Get a random edge color from the design
edge_color = get_edge_color(design_image)
# Color match the t-shirt
tshirt = color_match_tshirt(tshirt, edge_color)
# Resize design (35% of shirt width)
design_width = int(tshirt_width * 0.35)
design_height = int(design_width * design_image.size[1] / design_image.size[0])
design_image = design_image.resize((design_width, design_height), Image.Resampling.LANCZOS)
# Calculate position to center design
x = (tshirt_width - design_width) // 2
y = int(tshirt_height * 0.2)
# Create mask if design has transparency
if design_image.mode == 'RGBA':
mask = design_image.split()[3]
else:
mask = None
# Paste design onto shirt
tshirt.paste(design_image, (x, y), mask)
# Add logo watermark
tshirt = add_logo_watermark(tshirt)
return tshirt
@spaces.GPU()
def infer(prompt, style=None, tshirt_color="white", seed=42, randomize_seed=False,
width=1024, height=1024, num_inference_steps=4,
progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
enhanced_prompt = enhance_prompt_for_tshirt(prompt, style)
generator = torch.Generator().manual_seed(seed)
# Generate the design
design_image = pipe(
prompt=enhanced_prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
# Add logo to design
design_image = add_logo_watermark(design_image)
# Create t-shirt preview
tshirt_preview = create_tshirt_preview(design_image, tshirt_color)
return design_image, tshirt_preview, seed
# Available t-shirt colors
TSHIRT_COLORS = {
"White": "#FFFFFF",
"Black": "#000000",
"Navy": "#000080",
"Gray": "#808080"
}
examples = [
["Cool geometric mountain landscape", "minimal", "White"],
["Vintage motorcycle with flames", "vintage", "Black"],
["flamingo in scenic forset", "realistic", "White"],
["Adventure Starts typography", "typography", "White"]
]
styles = [
"minimal",
"vintage",
"artistic",
"geometric",
"typography",
"realistic"
]
css = """
#col-container {
margin: 0 auto;
max-width: 1200px !important;
padding: 20px;
}
.main-title {
text-align: center;
color: #2d3748;
margin-bottom: 1rem;
font-family: 'Poppins', sans-serif;
}
.subtitle {
text-align: center;
color: #4a5568;
margin-bottom: 2rem;
font-family: 'Inter', sans-serif;
font-size: 0.95rem;
line-height: 1.5;
}
.design-input {
border: 2px solid #e2e8f0;
border-radius: 10px;
padding: 12px !important;
margin-bottom: 1rem !important;
font-size: 1rem;
transition: all 0.3s ease;
}
.results-row {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 20px;
margin-top: 20px;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
# 👕Deradh's T-Shirt Design Generator
""",
elem_classes=["main-title"]
)
gr.Markdown(
"""
Create unique t-shirt designs using Deradh's AI.
Describe your design idea and select a style to generate professional-quality artwork
perfect for custom t-shirts.
""",
elem_classes=["subtitle"]
)
with gr.Row():
with gr.Column(scale=2):
prompt = gr.Text(
label="Design Description",
show_label=False,
max_lines=1,
placeholder="Describe your t-shirt design idea",
container=False,
elem_classes=["design-input"]
)
with gr.Column(scale=1):
style = gr.Dropdown(
choices=[""] + styles,
value="",
label="Style",
container=False
)
with gr.Column(scale=1):
tshirt_color = gr.Dropdown(
choices=list(TSHIRT_COLORS.keys()),
value="White",
label="T-Shirt Color",
container=False
)
run_button = gr.Button(
"✨ Generate",
scale=0,
elem_classes=["generate-button"]
)
with gr.Row(elem_classes=["results-row"]):
result = gr.Image(
label="Generated Design",
show_label=True,
elem_classes=["result-image"]
)
preview = gr.Image(
label="T-Shirt Preview",
show_label=True,
elem_classes=["preview-image"]
)
with gr.Accordion("🔧 Advanced Settings", open=False):
with gr.Group():
seed = gr.Slider(
label="Design Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(
label="Randomize Design",
value=True
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
num_inference_steps = gr.Slider(
label="Generation Quality (Steps)",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt, style, tshirt_color],
outputs=[result, preview, seed],
cache_examples=True
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, style, tshirt_color, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, preview, seed]
)
demo.launch() |