Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,453 Bytes
8ccf632 81b26b5 9693fed 06f0278 8ccf632 63f17a8 8ccf632 06f0278 8ccf632 9693fed 59a7070 9693fed 59a7070 63f17a8 59a7070 63f17a8 8ccf632 9693fed 54192f0 63f17a8 59a7070 8ccf632 9693fed 63f17a8 9693fed 63f17a8 8ccf632 9693fed 59a7070 8ccf632 63f17a8 8ccf632 59a7070 f8d6556 59a7070 f8d6556 9693fed 8ccf632 f8d6556 8ccf632 f8d6556 9693fed f8d6556 63f17a8 f8d6556 59a7070 f8d6556 8ccf632 59a7070 9693fed f8d6556 8ccf632 9693fed 8ccf632 f8d6556 59a7070 f8d6556 59a7070 f8d6556 8ccf632 f8d6556 59a7070 f8d6556 8ccf632 f8d6556 8ccf632 f8d6556 8ccf632 59a7070 9693fed 59a7070 63f17a8 9693fed 63f17a8 8ccf632 9aa8809 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
import io
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def create_tshirt_preview(design_image, tshirt_color="white"):
"""
Overlay the design onto a t-shirt template
"""
# Create a base t-shirt shape
tshirt_width = 800
tshirt_height = 1000
# Create base t-shirt image
tshirt = Image.new('RGB', (tshirt_width, tshirt_height), tshirt_color)
# Convert design to PIL Image if it's not already
if not isinstance(design_image, Image.Image):
design_image = Image.fromarray(design_image)
# Resize design to fit nicely on shirt (30% of shirt width)
design_width = int(tshirt_width * 0.3)
design_height = int(design_width * design_image.size[1] / design_image.size[0])
design_image = design_image.resize((design_width, design_height), Image.Resampling.LANCZOS)
# Calculate position to center design on shirt (top third of shirt)
x = (tshirt_width - design_width) // 2
y = int(tshirt_height * 0.25) # Position in top third
# If design has transparency (RGBA), create mask
if design_image.mode == 'RGBA':
mask = design_image.split()[3]
else:
mask = None
# Paste design onto shirt
tshirt.paste(design_image, (x, y), mask)
return tshirt
def enhance_prompt_for_tshirt(prompt, style=None):
"""Add specific terms to ensure good t-shirt designs."""
style_terms = {
"minimal": ["simple geometric shapes", "clean lines", "minimalist illustration"],
"vintage": ["distressed effect", "retro typography", "vintage illustration"],
"artistic": ["hand-drawn style", "watercolor effect", "artistic illustration"],
"geometric": ["abstract shapes", "geometric patterns", "modern design"],
"typography": ["bold typography", "creative lettering", "text-based design"]
}
base_terms = [
"create a t-shirt design",
"with centered composition",
"4k high quality",
"professional design",
"clear background"
]
enhanced_prompt = f"{prompt}, {', '.join(base_terms)}"
if style and style in style_terms:
style_specific_terms = style_terms[style]
enhanced_prompt = f"{enhanced_prompt}, {', '.join(style_specific_terms)}"
return enhanced_prompt
@spaces.GPU()
def infer(prompt, style=None, tshirt_color="white", seed=42, randomize_seed=False,
width=1024, height=1024, num_inference_steps=4,
progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
enhanced_prompt = enhance_prompt_for_tshirt(prompt, style)
generator = torch.Generator().manual_seed(seed)
# Generate the design
design_image = pipe(
prompt=enhanced_prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
# Create t-shirt preview
tshirt_preview = create_tshirt_preview(design_image, tshirt_color)
return design_image, tshirt_preview, seed
# Available t-shirt colors
TSHIRT_COLORS = {
"White": "#FFFFFF",
"Black": "#000000",
"Navy": "#000080",
"Gray": "#808080"
}
examples = [
["Cool geometric mountain landscape", "minimal", "White"],
["Vintage motorcycle with flames", "vintage", "Black"],
["Abstract watercolor butterfly in forest", "artistic", "White"],
["Adventure Awaits typography", "typography", "Gray"]
]
styles = [
"minimal",
"vintage",
"artistic",
"geometric",
"typography"
]
css = """
#col-container {
margin: 0 auto;
max-width: 1200px !important;
padding: 20px;
}
.main-title {
text-align: center;
color: #2d3748;
margin-bottom: 1rem;
font-family: 'Poppins', sans-serif;
}
.subtitle {
text-align: center;
color: #4a5568;
margin-bottom: 2rem;
font-family: 'Inter', sans-serif;
font-size: 0.95rem;
line-height: 1.5;
}
.design-input {
border: 2px solid #e2e8f0;
border-radius: 10px;
padding: 12px !important;
margin-bottom: 1rem !important;
font-size: 1rem;
transition: all 0.3s ease;
}
.results-row {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 20px;
margin-top: 20px;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
# 👕 Deradh's T-Shirt Design Generator
""",
elem_classes=["main-title"]
)
gr.Markdown(
"""
Create unique t-shirt designs using AI.
Describe your design idea and select a style to generate professional-quality artwork
perfect for custom t-shirts.
""",
elem_classes=["subtitle"]
)
with gr.Row():
with gr.Column(scale=2):
prompt = gr.Text(
label="Design Description",
show_label=False,
max_lines=1,
placeholder="Describe your t-shirt design idea",
container=False,
elem_classes=["design-input"]
)
with gr.Column(scale=1):
style = gr.Dropdown(
choices=[""] + styles,
value="",
label="Style",
container=False
)
with gr.Column(scale=1):
tshirt_color = gr.Dropdown(
choices=list(TSHIRT_COLORS.keys()),
value="White",
label="T-Shirt Color",
container=False
)
run_button = gr.Button(
"✨ Generate",
scale=0,
elem_classes=["generate-button"]
)
with gr.Row(elem_classes=["results-row"]):
result = gr.Image(
label="Generated Design",
show_label=True,
elem_classes=["result-image"]
)
preview = gr.Image(
label="T-Shirt Preview",
show_label=True,
elem_classes=["preview-image"]
)
with gr.Accordion("🔧 Advanced Settings", open=False):
with gr.Group():
seed = gr.Slider(
label="Design Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(
label="Randomize Design",
value=True
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
num_inference_steps = gr.Slider(
label="Generation Quality (Steps)",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt, style, tshirt_color],
outputs=[result, preview, seed],
cache_examples=True
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, style, tshirt_color, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, preview, seed]
)
demo.launch() |