File size: 8,580 Bytes
85ad390
 
 
bcde0da
b489b3f
85ad390
 
 
 
d86b86d
bcde0da
85ad390
b4b0910
 
 
 
85ad390
bcde0da
d86b86d
b489b3f
 
 
d86b86d
 
1552b06
23f92f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b489b3f
9cc14fb
b489b3f
b4b0910
23f92f3
 
 
b4b0910
85ad390
b489b3f
 
85ad390
 
b489b3f
 
 
9cc14fb
85ad390
b489b3f
 
 
9cc14fb
b489b3f
 
71ac033
 
 
 
 
 
 
 
 
 
 
 
b4b0910
71ac033
 
 
b4b0910
 
71ac033
b4b0910
71ac033
 
 
 
 
 
 
 
 
 
 
 
 
b4b0910
71ac033
 
 
85ad390
 
b4b0910
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from pydrive2.auth import GoogleAuth
from pydrive2.drive import GoogleDrive
import os
import gradio as gr
from datasets import load_dataset, Dataset, concatenate_datasets
import pandas as pd
from PIL import Image
from tqdm import tqdm
import logging
import yaml

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Load settings
if not os.path.exists("settings.yaml"):
    raise FileNotFoundError("settings.yaml file is missing. Please add it with 'client_secrets_file'.")

with open('settings.yaml', 'r') as file:
    settings = yaml.safe_load(file)

# Utility Functions
def safe_load_dataset(dataset_name):
    """Load Hugging Face dataset safely."""
    try:
        dataset = load_dataset(dataset_name)
        return dataset, len(dataset['train']) if 'train' in dataset else 0
    except Exception as e:
        logger.info(f"No existing dataset found. Starting fresh. Error: {str(e)}")
        return None, 0

def is_valid_image(file_path):
    """Check if a file is a valid image."""
    try:
        with Image.open(file_path) as img:
            img.verify()
            return True
    except Exception as e:
        logger.error(f"Invalid image: {file_path}. Error: {str(e)}")
        return False

def validate_input(folder_id, naming_convention):
    """Validate user input."""
    if not folder_id or not folder_id.strip():
        return False, "Folder ID cannot be empty"
    if not naming_convention or not naming_convention.strip():
        return False, "Naming convention cannot be empty"
    if not naming_convention.replace('_', '').isalnum():
        return False, "Naming convention should only contain letters, numbers, and underscores"
    return True, ""

# DatasetManager Class
class DatasetManager:
    def __init__(self, local_images_dir="downloaded_cards"):
        self.local_images_dir = local_images_dir
        self.drive = None
        self.dataset_name = "GotThatData/sports-cards"
        os.makedirs(local_images_dir, exist_ok=True)

    def authenticate_drive(self):
        """Authenticate with Google Drive."""
        try:
            gauth = GoogleAuth()
            gauth.settings['client_config_file'] = settings['client_secrets_file']
            
            # Try to load saved credentials
            gauth.LoadCredentialsFile("credentials.txt")
            if gauth.credentials is None:
                gauth.LocalWebserverAuth()
            elif gauth.access_token_expired:
                gauth.Refresh()
            else:
                gauth.Authorize()
            gauth.SaveCredentialsFile("credentials.txt")
            
            self.drive = GoogleDrive(gauth)
            return True, "Successfully authenticated with Google Drive"
        except Exception as e:
            logger.error(f"Authentication failed: {str(e)}")
            return False, f"Authentication failed: {str(e)}"

    def download_and_rename_files(self, drive_folder_id, naming_convention):
        """Download files from Google Drive and rename them."""
        if not self.drive:
            return False, "Google Drive not authenticated", []
        
        try:
            query = f"'{drive_folder_id}' in parents and trashed=false"
            file_list = self.drive.ListFile({'q': query}).GetList()
            
            if not file_list:
                logger.warning(f"No files found in folder: {drive_folder_id}")
                return False, "No files found in the specified folder.", []

            existing_dataset, start_index = safe_load_dataset(self.dataset_name)
            renamed_files = []
            processed_count = 0
            error_count = 0

            for i, file in enumerate(tqdm(file_list, desc="Downloading files", unit="file")):
                if 'mimeType' in file and 'image' in file['mimeType'].lower():
                    new_filename = f"{naming_convention}_{start_index + processed_count + 1}.jpg"
                    file_path = os.path.join(self.local_images_dir, new_filename)
                    
                    try:
                        file.GetContentFile(file_path)
                        if is_valid_image(file_path):
                            renamed_files.append({
                                'file_path': file_path,
                                'original_name': file['title'],
                                'new_name': new_filename
                            })
                            processed_count += 1
                            logger.info(f"Successfully processed: {file['title']} -> {new_filename}")
                        else:
                            error_count += 1
                            if os.path.exists(file_path):
                                os.remove(file_path)
                    except Exception as e:
                        error_count += 1
                        logger.error(f"Error processing file {file['title']}: {str(e)}")
                        if os.path.exists(file_path):
                            os.remove(file_path)

            status_message = f"Processed {processed_count} images successfully"
            if error_count > 0:
                status_message += f" ({error_count} files failed)"
            
            return True, status_message, renamed_files
        except Exception as e:
            logger.error(f"Download error: {str(e)}")
            return False, f"Error during download: {str(e)}", []

    def update_huggingface_dataset(self, renamed_files):
        """Update Hugging Face dataset with new images."""
        if not renamed_files:
            return False, "No files to update"
            
        try:
            df = pd.DataFrame(renamed_files)
            new_dataset = Dataset.from_pandas(df)

            existing_dataset, _ = safe_load_dataset(self.dataset_name)
            if existing_dataset and 'train' in existing_dataset:
                combined_dataset = concatenate_datasets([existing_dataset['train'], new_dataset])
            else:
                combined_dataset = new_dataset
            
            combined_dataset.push_to_hub(self.dataset_name, split="train")
            return True, f"Successfully updated dataset '{self.dataset_name}' with {len(renamed_files)} new images."
        except Exception as e:
            logger.error(f"Dataset update error: {str(e)}")
            return False, f"Error updating Hugging Face dataset: {str(e)}"

def process_pipeline(folder_id, naming_convention):
    """Main pipeline for processing images and updating dataset."""
    # Validate input
    is_valid, error_message = validate_input(folder_id, naming_convention)
    if not is_valid:
        return error_message, []

    manager = DatasetManager()

    # Step 1: Authenticate Google Drive
    auth_success, auth_message = manager.authenticate_drive()
    if not auth_success:
        return auth_message, []

    # Step 2: Download and rename files
    success, message, renamed_files = manager.download_and_rename_files(folder_id, naming_convention)
    if not success:
        return message, []

    # Step 3: Update Hugging Face dataset
    success, hf_message = manager.update_huggingface_dataset(renamed_files)
    return f"{message}\n{hf_message}", renamed_files

def process_ui(folder_id, naming_convention):
    """UI handler for the process pipeline"""
    status, renamed_files = process_pipeline(folder_id, naming_convention)
    table_data = [[file['original_name'], file['new_name'], file['file_path']] 
                 for file in renamed_files] if renamed_files else []
    return status, table_data

# Simplified Gradio interface
demo = gr.Interface(
    fn=process_ui,
    inputs=[
        gr.Textbox(
            label="Google Drive Folder ID",
            placeholder="Enter the folder ID from the URL"
        ),
        gr.Textbox(
            label="Naming Convention",
            placeholder="e.g., sports_card",
            value="sports_card"
        )
    ],
    outputs=[
        gr.Textbox(label="Status"),
        gr.Dataframe(
            headers=["Original Name", "New Name", "File Path"]
        )
    ],
    title="Sports Cards Dataset Processor",
    description="""
    Instructions:
    1. Enter the Google Drive folder ID (found in the folder's URL)
    2. Specify a naming convention for the files (e.g., 'sports_card')
    3. Click submit to start processing
    
    Note: Only image files will be processed. Invalid images will be skipped.
    """
)

if __name__ == "__main__":
    demo.launch()