Spaces:
Running
Running
File size: 7,242 Bytes
51e2977 267a719 51e2977 267a719 9b1e028 267a719 51e2977 9b1e028 51e2977 d25bfc0 9b1e028 d25bfc0 9b1e028 d25bfc0 9b1e028 d25bfc0 9b1e028 d25bfc0 5a9bbeb 9b1e028 d25bfc0 9b1e028 d25bfc0 e1695f2 9b1e028 51e2977 d25bfc0 51e2977 d25bfc0 51e2977 9b1e028 51e2977 d25bfc0 51e2977 9b1e028 d25bfc0 51e2977 9b1e028 51e2977 d25bfc0 9b1e028 d25bfc0 51e2977 d25bfc0 9b1e028 d25bfc0 9b1e028 d25bfc0 9b1e028 d25bfc0 9b1e028 d25bfc0 5a9bbeb 9b1e028 d25bfc0 e1695f2 9b1e028 d25bfc0 51e2977 d25bfc0 51e2977 9b1e028 51e2977 9b1e028 51e2977 9b1e028 51e2977 9b1e028 51e2977 9b1e028 51e2977 d25bfc0 9b1e028 d25bfc0 9b1e028 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
from __future__ import annotations
import pathlib
import sys
import huggingface_hub
import numpy as np
import torch
import torch.nn as nn
app_dir = pathlib.Path(__file__).parent
submodule_dir = app_dir / "ViTPose"
sys.path.insert(0, submodule_dir.as_posix())
from mmdet.apis import inference_detector, init_detector
from mmpose.apis import (
inference_top_down_pose_model,
init_pose_model,
process_mmdet_results,
vis_pose_result,
)
class DetModel:
MODEL_DICT = {
"YOLOX-tiny": {
"config": "mmdet_configs/configs/yolox/yolox_tiny_8x8_300e_coco.py",
"model": "https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth",
},
"YOLOX-s": {
"config": "mmdet_configs/configs/yolox/yolox_s_8x8_300e_coco.py",
"model": "https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth",
},
"YOLOX-l": {
"config": "mmdet_configs/configs/yolox/yolox_l_8x8_300e_coco.py",
"model": "https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth",
},
"YOLOX-x": {
"config": "mmdet_configs/configs/yolox/yolox_x_8x8_300e_coco.py",
"model": "https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth",
},
}
def __init__(self):
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self._load_all_models_once()
self.model_name = "YOLOX-l"
self.model = self._load_model(self.model_name)
def _load_all_models_once(self) -> None:
for name in self.MODEL_DICT:
self._load_model(name)
def _load_model(self, name: str) -> nn.Module:
d = self.MODEL_DICT[name]
return init_detector(d["config"], d["model"], device=self.device)
def set_model(self, name: str) -> None:
if name == self.model_name:
return
self.model_name = name
self.model = self._load_model(name)
def detect_and_visualize(self, image: np.ndarray, score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
out = self.detect(image)
vis = self.visualize_detection_results(image, out, score_threshold)
return out, vis
def detect(self, image: np.ndarray) -> list[np.ndarray]:
image = image[:, :, ::-1] # RGB -> BGR
out = inference_detector(self.model, image)
return out
def visualize_detection_results(
self, image: np.ndarray, detection_results: list[np.ndarray], score_threshold: float = 0.3
) -> np.ndarray:
person_det = [detection_results[0]] + [np.array([]).reshape(0, 5)] * 79
image = image[:, :, ::-1] # RGB -> BGR
vis = self.model.show_result(
image, person_det, score_thr=score_threshold, bbox_color=None, text_color=(200, 200, 200), mask_color=None
)
return vis[:, :, ::-1] # BGR -> RGB
class AppDetModel(DetModel):
def run(self, model_name: str, image: np.ndarray, score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
self.set_model(model_name)
return self.detect_and_visualize(image, score_threshold)
class PoseModel:
MODEL_DICT = {
"ViTPose-B (single-task train)": {
"config": "ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py",
"model": "models/vitpose-b.pth",
},
"ViTPose-L (single-task train)": {
"config": "ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py",
"model": "models/vitpose-l.pth",
},
"ViTPose-B (multi-task train, COCO)": {
"config": "ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py",
"model": "models/vitpose-b-multi-coco.pth",
},
"ViTPose-L (multi-task train, COCO)": {
"config": "ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py",
"model": "models/vitpose-l-multi-coco.pth",
},
}
def __init__(self):
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.model_name = "ViTPose-B (multi-task train, COCO)"
self.model = self._load_model(self.model_name)
def _load_all_models_once(self) -> None:
for name in self.MODEL_DICT:
self._load_model(name)
def _load_model(self, name: str) -> nn.Module:
d = self.MODEL_DICT[name]
ckpt_path = huggingface_hub.hf_hub_download("public-data/ViTPose", d["model"])
model = init_pose_model(d["config"], ckpt_path, device=self.device)
return model
def set_model(self, name: str) -> None:
if name == self.model_name:
return
self.model_name = name
self.model = self._load_model(name)
def predict_pose_and_visualize(
self,
image: np.ndarray,
det_results: list[np.ndarray],
box_score_threshold: float,
kpt_score_threshold: float,
vis_dot_radius: int,
vis_line_thickness: int,
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
out = self.predict_pose(image, det_results, box_score_threshold)
vis = self.visualize_pose_results(image, out, kpt_score_threshold, vis_dot_radius, vis_line_thickness)
return out, vis
def predict_pose(
self, image: np.ndarray, det_results: list[np.ndarray], box_score_threshold: float = 0.5
) -> list[dict[str, np.ndarray]]:
image = image[:, :, ::-1] # RGB -> BGR
person_results = process_mmdet_results(det_results, 1)
out, _ = inference_top_down_pose_model(
self.model, image, person_results=person_results, bbox_thr=box_score_threshold, format="xyxy"
)
return out
def visualize_pose_results(
self,
image: np.ndarray,
pose_results: list[np.ndarray],
kpt_score_threshold: float = 0.3,
vis_dot_radius: int = 4,
vis_line_thickness: int = 1,
) -> np.ndarray:
image = image[:, :, ::-1] # RGB -> BGR
vis = vis_pose_result(
self.model,
image,
pose_results,
kpt_score_thr=kpt_score_threshold,
radius=vis_dot_radius,
thickness=vis_line_thickness,
)
return vis[:, :, ::-1] # BGR -> RGB
class AppPoseModel(PoseModel):
def run(
self,
model_name: str,
image: np.ndarray,
det_results: list[np.ndarray],
box_score_threshold: float,
kpt_score_threshold: float,
vis_dot_radius: int,
vis_line_thickness: int,
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
self.set_model(model_name)
return self.predict_pose_and_visualize(
image, det_results, box_score_threshold, kpt_score_threshold, vis_dot_radius, vis_line_thickness
)
|