Grandediw commited on
Commit
d62388c
·
verified ·
1 Parent(s): 578b99a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -36
app.py CHANGED
@@ -1,54 +1,47 @@
1
  import gradio as gr
2
- from unsloth import FastLanguageModel
3
- from transformers import TextStreamer
4
 
5
- # Load the model
6
- model_path = "Grandediw/lora_model" # Replace with the actual model path
7
- model = FastLanguageModel.for_inference(model_path)
8
- tokenizer = model.tokenizer # Use the tokenizer from the model
9
 
10
- # Define the response function
11
  def respond(
12
  message,
13
  history: list[tuple[str, str]],
 
14
  max_tokens,
15
  temperature,
16
  top_p,
17
  ):
18
- # Build chat history
19
- messages = [{"role": "user", "content": message}]
20
- for user_msg, assistant_msg in history:
21
- messages.append({"role": "user", "content": user_msg})
22
- messages.append({"role": "assistant", "content": assistant_msg})
23
 
24
- # Prepare inputs
25
- inputs = tokenizer.apply_chat_template(
26
- messages,
27
- tokenize=True,
28
- add_generation_prompt=True,
29
- return_tensors="pt",
30
- ).to("cuda")
31
-
32
- # Stream response
33
- response = ""
34
- streamer = TextStreamer(tokenizer, skip_prompt=True)
35
- model.generate(
36
- input_ids=inputs,
37
- streamer=streamer,
38
- max_new_tokens=max_tokens,
39
- use_cache=True,
40
- temperature=temperature,
41
- min_p=top_p,
42
- )
43
- return response
44
 
45
  # Build the Gradio ChatInterface
46
  demo = gr.ChatInterface(
47
- fn=respond,
48
  additional_inputs=[
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=1.5, step=0.1, label="Temperature"),
51
- gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p"),
 
 
 
 
 
 
 
52
  ],
53
  )
54
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
 
3
 
4
+ # Initialize the InferenceClient
5
+ client = InferenceClient(model="Grandediw/lora_model")
 
 
6
 
 
7
  def respond(
8
  message,
9
  history: list[tuple[str, str]],
10
+ system_message,
11
  max_tokens,
12
  temperature,
13
  top_p,
14
  ):
15
+ context = system_message + "\n"
16
+ for user_message, assistant_message in history:
17
+ context += f"User: {user_message}\nAssistant: {assistant_message}\n"
18
+ context += f"User: {message}\nAssistant:"
 
19
 
20
+ try:
21
+ response = client.text_generation(
22
+ context,
23
+ max_new_tokens=max_tokens,
24
+ temperature=temperature,
25
+ top_p=top_p,
26
+ )
27
+ yield response
28
+ except Exception as e:
29
+ yield f"Error: {e}"
 
 
 
 
 
 
 
 
 
 
30
 
31
  # Build the Gradio ChatInterface
32
  demo = gr.ChatInterface(
33
+ respond,
34
  additional_inputs=[
35
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
36
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
37
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
38
+ gr.Slider(
39
+ minimum=0.1,
40
+ maximum=1.0,
41
+ value=0.95,
42
+ step=0.05,
43
+ label="Top-p (nucleus sampling)",
44
+ ),
45
  ],
46
  )
47