|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model_repo_id = "Grandediw/lora_model" |
|
|
|
|
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) |
|
pipe = pipe.to(device) |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
|
|
def infer( |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator(device).manual_seed(seed) |
|
|
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
).images[0] |
|
|
|
return image, seed |
|
|
|
|
|
examples = [ |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"An astronaut riding a green horse", |
|
"A delicious ceviche cheesecake slice", |
|
] |
|
|
|
|
|
css = """ |
|
#interface-container { |
|
margin: 0 auto; |
|
max-width: 700px; |
|
padding: 10px; |
|
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1); |
|
border-radius: 10px; |
|
background-color: #f9f9f9; |
|
} |
|
#header { |
|
text-align: center; |
|
font-size: 1.5em; |
|
margin-bottom: 20px; |
|
color: #333; |
|
} |
|
#advanced-settings { |
|
background-color: #f1f1f1; |
|
padding: 10px; |
|
border-radius: 8px; |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Box(elem_id="interface-container"): |
|
gr.Markdown( |
|
""" |
|
<div id="header">🖼️ Text-to-Image Generator</div> |
|
Generate high-quality images from your text prompts with the fine-tuned LoRA model. |
|
""" |
|
) |
|
|
|
|
|
with gr.Row(): |
|
prompt = gr.Textbox( |
|
label="Prompt", |
|
placeholder="Describe the image you want to create...", |
|
lines=2, |
|
) |
|
run_button = gr.Button("Generate Image", variant="primary") |
|
|
|
|
|
result = gr.Image(label="Generated Image").style(height="512px") |
|
|
|
|
|
with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"): |
|
negative_prompt = gr.Textbox( |
|
label="Negative Prompt", |
|
placeholder="What to exclude from the image...", |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) |
|
seed = gr.Number(label="Seed", value=0, interactive=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Image Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=64, |
|
value=512, |
|
) |
|
height = gr.Slider( |
|
label="Image Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=64, |
|
value=512, |
|
) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=0.0, |
|
maximum=20.0, |
|
step=0.1, |
|
value=7.5, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Steps", |
|
minimum=10, |
|
maximum=100, |
|
step=5, |
|
value=50, |
|
) |
|
|
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=[prompt], |
|
outputs=[result], |
|
label="Try these prompts", |
|
) |
|
|
|
|
|
run_button.click( |
|
fn=infer, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|