lab2-2024 / app.py
Grandediw's picture
Update app.py
1f2775d verified
raw
history blame
4.47 kB
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "Grandediw/lora_model" # Use the fine-tuned model
# Adjust torch data type based on device
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Load the model pipeline
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Inference function
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device).manual_seed(seed)
# Generate the image
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
# Example prompts
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
# Improved CSS for better styling
css = """
#interface-container {
margin: 0 auto;
max-width: 700px;
padding: 10px;
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1);
border-radius: 10px;
background-color: #f9f9f9;
}
#header {
text-align: center;
font-size: 1.5em;
margin-bottom: 20px;
color: #333;
}
#advanced-settings {
background-color: #f1f1f1;
padding: 10px;
border-radius: 8px;
}
"""
# Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Box(elem_id="interface-container"):
gr.Markdown(
"""
<div id="header">🖼️ Text-to-Image Generator</div>
Generate high-quality images from your text prompts with the fine-tuned LoRA model.
"""
)
# Main input row
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want to create...",
lines=2,
)
run_button = gr.Button("Generate Image", variant="primary")
# Output image display
result = gr.Image(label="Generated Image").style(height="512px")
# Advanced settings
with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"):
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="What to exclude from the image...",
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
seed = gr.Number(label="Seed", value=0, interactive=True)
with gr.Row():
width = gr.Slider(
label="Image Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=512,
)
height = gr.Slider(
label="Image Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Steps",
minimum=10,
maximum=100,
step=5,
value=50,
)
# Examples
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result],
label="Try these prompts",
)
# Event handler
run_button.click(
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()