Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
# Load the Hugging Face API token from environment variable
|
7 |
token = os.getenv("HUGGINGFACE_API_TOKEN")
|
@@ -12,19 +12,26 @@ if not token:
|
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
|
14 |
# Load the tokenizer and model using the token
|
15 |
-
model_repo = "unsloth/
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained(model_repo,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
model = AutoModelForCausalLM.from_pretrained(
|
18 |
model_repo,
|
19 |
-
|
20 |
device_map="auto",
|
21 |
-
|
22 |
-
load_in_4bit=True,
|
23 |
-
quantization_config={"bnb_4bit_use_double_quant": True, "bnb_4bit_quant_type": "nf4"}
|
24 |
)
|
25 |
|
26 |
-
#
|
27 |
-
model.to(device)
|
28 |
model.eval()
|
29 |
|
30 |
# Define the inference function
|
@@ -37,7 +44,7 @@ def infer(prompt):
|
|
37 |
|
38 |
# Gradio interface
|
39 |
with gr.Blocks() as demo:
|
40 |
-
gr.Markdown("##
|
41 |
|
42 |
with gr.Row():
|
43 |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
5 |
|
6 |
# Load the Hugging Face API token from environment variable
|
7 |
token = os.getenv("HUGGINGFACE_API_TOKEN")
|
|
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
|
14 |
# Load the tokenizer and model using the token
|
15 |
+
model_repo = "unsloth/llama-3.2-3b-instruct-bnb-4bit"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_repo, token=token)
|
17 |
+
|
18 |
+
# Configure 4-bit quantization
|
19 |
+
quantization_config = BitsAndBytesConfig(
|
20 |
+
load_in_4bit=True,
|
21 |
+
bnb_4bit_use_double_quant=True,
|
22 |
+
bnb_4bit_quant_type="nf4",
|
23 |
+
bnb_4bit_compute_dtype=torch.float16
|
24 |
+
)
|
25 |
+
|
26 |
+
# Load the model with quantization configuration
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
28 |
model_repo,
|
29 |
+
token=token,
|
30 |
device_map="auto",
|
31 |
+
quantization_config=quantization_config
|
|
|
|
|
32 |
)
|
33 |
|
34 |
+
# Ensure the model is in evaluation mode
|
|
|
35 |
model.eval()
|
36 |
|
37 |
# Define the inference function
|
|
|
44 |
|
45 |
# Gradio interface
|
46 |
with gr.Blocks() as demo:
|
47 |
+
gr.Markdown("## LLaMA 3.2 3B Instruct Model Inference")
|
48 |
|
49 |
with gr.Row():
|
50 |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
|