Grandediw commited on
Commit
5445a09
·
verified ·
1 Parent(s): 1279ab7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +151 -55
app.py CHANGED
@@ -1,58 +1,154 @@
1
- import os
2
- import gradio as gr
 
 
 
 
3
  import torch
4
- from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
5
-
6
- # Load the Hugging Face API token from environment variable
7
- token = os.getenv("HUGGINGFACE_API_TOKEN")
8
- if not token:
9
- raise ValueError("HUGGINGFACE_API_TOKEN is not set. Please add it in the Secrets section of your Space.")
10
-
11
- # Configure device
12
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
-
14
- # Load the tokenizer and model using the token
15
- model_repo = "unsloth/llama-3.2-3b-instruct-bnb-4bit"
16
- tokenizer = AutoTokenizer.from_pretrained(model_repo, token=token)
17
-
18
- # Configure 4-bit quantization
19
- quantization_config = BitsAndBytesConfig(
20
- load_in_4bit=True,
21
- bnb_4bit_use_double_quant=True,
22
- bnb_4bit_quant_type="nf4",
23
- bnb_4bit_compute_dtype=torch.float16
24
- )
25
-
26
- # Load the model with quantization configuration
27
- model = AutoModelForCausalLM.from_pretrained(
28
- model_repo,
29
- token=token,
30
- device_map="auto",
31
- quantization_config=quantization_config
32
- )
33
-
34
- # Ensure the model is in evaluation mode
35
- model.eval()
36
-
37
- # Define the inference function
38
- def infer(prompt):
39
- inputs = tokenizer(prompt, return_tensors="pt").to(device)
40
- with torch.no_grad():
41
- outputs = model.generate(**inputs, max_length=512)
42
- generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
43
- return generated_text
44
-
45
- # Gradio interface
46
- with gr.Blocks() as demo:
47
- gr.Markdown("## LLaMA 3.2 3B Instruct Model Inference")
48
-
49
- with gr.Row():
50
- prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
51
- generate_button = gr.Button("Generate")
52
-
53
- output = gr.Textbox(label="Generated Text")
54
-
55
- generate_button.click(fn=infer, inputs=[prompt], outputs=[output])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
  if __name__ == "__main__":
58
- demo.launch()
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+
5
+ # import spaces #[uncomment to use ZeroGPU]
6
+ from diffusers import DiffusionPipeline
7
  import torch
8
+
9
+ device = "cuda" if torch.cuda.is_available() else "cpu"
10
+ model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
+
12
+ if torch.cuda.is_available():
13
+ torch_dtype = torch.float16
14
+ else:
15
+ torch_dtype = torch.float32
16
+
17
+ pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
+ pipe = pipe.to(device)
19
+
20
+ MAX_SEED = np.iinfo(np.int32).max
21
+ MAX_IMAGE_SIZE = 1024
22
+
23
+
24
+ # @spaces.GPU #[uncomment to use ZeroGPU]
25
+ def infer(
26
+ prompt,
27
+ negative_prompt,
28
+ seed,
29
+ randomize_seed,
30
+ width,
31
+ height,
32
+ guidance_scale,
33
+ num_inference_steps,
34
+ progress=gr.Progress(track_tqdm=True),
35
+ ):
36
+ if randomize_seed:
37
+ seed = random.randint(0, MAX_SEED)
38
+
39
+ generator = torch.Generator().manual_seed(seed)
40
+
41
+ image = pipe(
42
+ prompt=prompt,
43
+ negative_prompt=negative_prompt,
44
+ guidance_scale=guidance_scale,
45
+ num_inference_steps=num_inference_steps,
46
+ width=width,
47
+ height=height,
48
+ generator=generator,
49
+ ).images[0]
50
+
51
+ return image, seed
52
+
53
+
54
+ examples = [
55
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
+ "An astronaut riding a green horse",
57
+ "A delicious ceviche cheesecake slice",
58
+ ]
59
+
60
+ css = """
61
+ #col-container {
62
+ margin: 0 auto;
63
+ max-width: 640px;
64
+ }
65
+ """
66
+
67
+ with gr.Blocks(css=css) as demo:
68
+ with gr.Column(elem_id="col-container"):
69
+ gr.Markdown(" # Text-to-Image Gradio Template")
70
+
71
+ with gr.Row():
72
+ prompt = gr.Text(
73
+ label="Prompt",
74
+ show_label=False,
75
+ max_lines=1,
76
+ placeholder="Enter your prompt",
77
+ container=False,
78
+ )
79
+
80
+ run_button = gr.Button("Run", scale=0, variant="primary")
81
+
82
+ result = gr.Image(label="Result", show_label=False)
83
+
84
+ with gr.Accordion("Advanced Settings", open=False):
85
+ negative_prompt = gr.Text(
86
+ label="Negative prompt",
87
+ max_lines=1,
88
+ placeholder="Enter a negative prompt",
89
+ visible=False,
90
+ )
91
+
92
+ seed = gr.Slider(
93
+ label="Seed",
94
+ minimum=0,
95
+ maximum=MAX_SEED,
96
+ step=1,
97
+ value=0,
98
+ )
99
+
100
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
+
102
+ with gr.Row():
103
+ width = gr.Slider(
104
+ label="Width",
105
+ minimum=256,
106
+ maximum=MAX_IMAGE_SIZE,
107
+ step=32,
108
+ value=1024, # Replace with defaults that work for your model
109
+ )
110
+
111
+ height = gr.Slider(
112
+ label="Height",
113
+ minimum=256,
114
+ maximum=MAX_IMAGE_SIZE,
115
+ step=32,
116
+ value=1024, # Replace with defaults that work for your model
117
+ )
118
+
119
+ with gr.Row():
120
+ guidance_scale = gr.Slider(
121
+ label="Guidance scale",
122
+ minimum=0.0,
123
+ maximum=10.0,
124
+ step=0.1,
125
+ value=0.0, # Replace with defaults that work for your model
126
+ )
127
+
128
+ num_inference_steps = gr.Slider(
129
+ label="Number of inference steps",
130
+ minimum=1,
131
+ maximum=50,
132
+ step=1,
133
+ value=2, # Replace with defaults that work for your model
134
+ )
135
+
136
+ gr.Examples(examples=examples, inputs=[prompt])
137
+ gr.on(
138
+ triggers=[run_button.click, prompt.submit],
139
+ fn=infer,
140
+ inputs=[
141
+ prompt,
142
+ negative_prompt,
143
+ seed,
144
+ randomize_seed,
145
+ width,
146
+ height,
147
+ guidance_scale,
148
+ num_inference_steps,
149
+ ],
150
+ outputs=[result, seed],
151
+ )
152
 
153
  if __name__ == "__main__":
154
+ demo.launch()