File size: 13,558 Bytes
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
8023629
ff9d83f
 
 
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8023629
1cc6224
 
8023629
ff9d83f
 
 
 
1cc6224
 
 
 
 
 
 
 
 
ff9d83f
 
 
 
 
 
 
 
 
1cc6224
 
 
 
 
 
 
 
 
8023629
1cc6224
 
 
 
 
 
2491006
 
 
 
 
 
 
1cc6224
 
2491006
8023629
1cc6224
 
 
5d76074
db9167c
 
5d76074
74a12f1
5d76074
1cc6224
 
5415e05
 
 
 
2491006
 
5415e05
2491006
5415e05
 
2491006
 
 
 
 
 
 
 
 
 
 
5415e05
3090e09
1cc6224
2491006
62fea81
1cc6224
 
 
 
 
 
 
34e8e79
1cc6224
 
2491006
 
1cc6224
 
 
 
2491006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e32b65
 
2491006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os

os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'

openai.api_key = os.environ["OPENAI_API_KEY"]

system_message = "You are a eco-friendly travel chatbot specialized in providing information on eco-friendly restaurants, hotels, and attractions in NYC."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]

# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
    This version finds the best match based on the content of the query.
    """
    try:
        # Lowercase the query for better matching
        lower_query = user_query.lower()
        
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        
        # Find the index of the most similar segment
        best_idx = similarities.argmax()
        
        # Return the most relevant segment
        return segments[best_idx]
    except Exception as e:
        print(f"Error in finding relevant segment: {e}")
        return ""

def generate_response(user_query, relevant_segment):
    """
    Generate a response emphasizing the bot's capability in providing eco-friendly travel information.
    """
    try:
        user_message = f"Here's the information on eco-friendly travel information: {relevant_segment}"

        # Append user's message to messages list
        messages.append({"role": "user", "content": user_message})
        
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
            max_tokens=150,
            temperature=0.2,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )
        
        # Extract the response text
        output_text = response['choices'][0]['message']['content'].strip()
        
        # Append assistant's message to messages list for context
        messages.append({"role": "assistant", "content": output_text})
        
        return output_text
        
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"

def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    if question == "":
        return "Welcome to GreenGuide! Ask me anything about eco-friendly hotels, restaurants, and things to do in NYC."
    relevant_segment = find_relevant_segment(question, segments)
    if not relevant_segment:
        return "Could not find specific information. Please refine your question."
    response = generate_response(question, relevant_segment)
    return response

# Define the HTML iframe content

iframe = '''
<iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d193595.2528001417!2d-74.1444872802558!3d40.69763123330436!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x89c24fa5d33f083b%3A0xc80b8f06e177fe62!2sNew%20York%2C%20NY!5e0!3m2!1sen!2sus!4v1722483445443!5m2!1sen!2sus" width="600" height="450" style="border:0;" allowfullscreen="" loading="lazy" referrerpolicy="no-referrer-when-downgrade"></iframe>
'''


# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# 🌱 Welcome to GreenGuide!
## Your AI-driven assistant for all eco-friendly travel-related queries in NYC. Created by Eva, Amy, and Ambur of the 2024 Kode With Klossy NYC AI/ML Camp. 
"""

topics = """
### Feel free to ask me anything things to do in the city!
- Hotels (affordable, luxury)
- Restaurants (regular, vegetarian, vegan)
- Parks & Gardens
- Thrift Stores
- Attractions
"""

# Create a Gradio HTML component
def display_iframe():
    return iframe
def display_image():
    return "https://i.giphy.com/media/v1.Y2lkPTc5MGI3NjExZzdqMnkzcWpjbGhmM3hzcXp0MGpuaTF5djR4bjBxM3Biam5zbzNnMCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9cw/GxMnTi3hV3qaIgbgQL/giphy.gif"
    #return "https://cdn-uploads.huggingface.co/production/uploads/6668622b72b61ba78fe7d4bb/PkWjNxvGm9MOqGkZdiT4e.png"
theme = gr.themes.Monochrome(
    primary_hue="amber", #okay this did NOT work lmaoo
    secondary_hue="rose",
).set(
    background_fill_primary='#CBE9A2',  # BACKGROUND
    background_fill_primary_dark='#768550',
    background_fill_secondary='#768550',  # BUTTON HOVER
    background_fill_secondary_dark='#99a381', #LOADING BAR
    border_color_accent='#768550',
    border_color_accent_dark='#768550',
    border_color_accent_subdued='#768550',
    border_color_primary='#03a9f4',
    block_border_color='#b3e5fc',
    button_primary_background_fill='#768550',
    button_primary_background_fill_dark='#768550'
)

# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
    gr.Image("header.png", show_label = False, show_share_button = False, show_download_button = False) #CHANGE !!
    gr.Markdown(welcome_message)  # Display the formatted welcome message
    with gr.Row():
        with gr.Column():
            gr.Markdown(topics)  # Show the topics on the left side
    with gr.Row():
        with gr.Column():
            question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
            answer = gr.Textbox(label="GreenGuide Response", placeholder="GreenGuide will respond here...", interactive=False, lines=10)
            submit_button = gr.Button("Submit")
            submit_button.click(fn=query_model, inputs=question, outputs=answer)

    gr.HTML(iframe)        
    

# Launch the Gradio app to allow user interaction
demo.launch(share=True)

# import gradio as gr
# from sentence_transformers import SentenceTransformer, util
# import openai
# import os

# os.environ["TOKENIZERS_PARALLELISM"] = "false"

# # Initialize paths and model identifiers for easy configuration and maintenance
# filename = "output_topic_details.txt"  # Path to the file storing chess-specific details
# retrieval_model_name = 'output/sentence-transformer-finetuned/'

# openai.api_key = os.environ["OPENAI_API_KEY"]

# system_message = "You are a eco-friendly travel chatbot specialized in providing information on eco-friendly restaurants, hotels, and attractions in NYC."
# # Initial system message to set the behavior of the assistant
# messages = [{"role": "system", "content": system_message}]

# # Attempt to load the necessary models and provide feedback on success or failure
# try:
#     retrieval_model = SentenceTransformer(retrieval_model_name)
#     print("Models loaded successfully.")
# except Exception as e:
#     print(f"Failed to load models: {e}")

# def load_and_preprocess_text(filename):
#     """
#     Load and preprocess text from a file, removing empty lines and stripping whitespace.
#     """
#     try:
#         with open(filename, 'r', encoding='utf-8') as file:
#             segments = [line.strip() for line in file if line.strip()]
#         print("Text loaded and preprocessed successfully.")
#         return segments
#     except Exception as e:
#         print(f"Failed to load or preprocess text: {e}")
#         return []

# segments = load_and_preprocess_text(filename)

# def find_relevant_segment(user_query, segments):
#     """
#     Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
#     This version finds the best match based on the content of the query.
#     """
#     try:
#         # Lowercase the query for better matching
#         lower_query = user_query.lower()
        
#         # Encode the query and the segments
#         query_embedding = retrieval_model.encode(lower_query)
#         segment_embeddings = retrieval_model.encode(segments)
        
#         # Compute cosine similarities between the query and the segments
#         similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        
#         # Find the index of the most similar segment
#         best_idx = similarities.argmax()
        
#         # Return the most relevant segment
#         return segments[best_idx]
#     except Exception as e:
#         print(f"Error in finding relevant segment: {e}")
#         return ""

# def generate_response(user_query, relevant_segment):
#     """
#     Generate a response emphasizing the bot's capability in providing eco-friendly travel information.
#     """
#     try:
#         user_message = f"Here's the information on eco-friendly travel information: {relevant_segment}"

#         # Append user's message to messages list
#         messages.append({"role": "user", "content": user_message})
        
#         response = openai.ChatCompletion.create(
#             model="gpt-3.5-turbo",
#             messages=messages,
#             max_tokens=150,
#             temperature=0.2,
#             top_p=1,
#             frequency_penalty=0,
#             presence_penalty=0
#         )
        
#         # Extract the response text
#         output_text = response['choices'][0]['message']['content'].strip()
        
#         # Append assistant's message to messages list for context
#         messages.append({"role": "assistant", "content": output_text})
        
#         return output_text
        
#     except Exception as e:
#         print(f"Error in generating response: {e}")
#         return f"Error in generating response: {e}"

# def query_model(question):
#     """
#     Process a question, find relevant information, and generate a response.
#     """
#     if question == "":
#         return "Welcome to GreenGuide! Ask me anything about eco-friendly hotels, restaurants, and things to do in NYC."
#     relevant_segment = find_relevant_segment(question, segments)
#     if not relevant_segment:
#         return "Could not find specific information. Please refine your question."
#     response = generate_response(question, relevant_segment)
#     return response

# # Define the welcome message and specific topics the chatbot can provide information about
# welcome_message = """
# # ♟️ Welcome to GreenGuide!

# ## Your AI-driven assistant for all eco-friendly travel-related queries in NYC. Created by Eva, Amy, and Ambur of the 2024 Kode With Klossy NYC AI/ML Camp. 
# """

# topics = """
# ### Feel free to ask me anything things to do in the city!
# - Hotels (affordable, luxury)
# - Restaurants (regular, vegetarian, vegan)
# - Parks & Gardens
# - Thrift Stores
# - Attractions

# """

# # Create a Gradio HTML component
# def display_iframe():
#     return iframe
# def display_image():
#     return "https://cdn-uploads.huggingface.co/production/uploads/6668622b72b61ba78fe7d4bb/PkWjNxvGm9MOqGkZdiT4e.png"
# theme = gr.themes.Monochrome(
#     primary_hue="amber",
#     secondary_hue="rose",
# ).set(
#     background_fill_primary='*primary_200',
#     background_fill_primary_dark='*primary_200',
#     background_fill_secondary='*secondary_300',
#     background_fill_secondary_dark='*secondary_300',
#     border_color_accent='*secondary_200',
#     border_color_accent_dark='*secondary_600',
#     border_color_accent_subdued='*secondary_200',
#     border_color_primary='*secondary_300',
#     block_border_color='*secondary_200',
#     button_primary_background_fill='*secondary_300',
#     button_primary_background_fill_dark='*secondary_300'
# )

# # Setup the Gradio Blocks interface with custom layout components
# with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
#     gr.Markdown(welcome_message)  # Display the formatted welcome message
#     with gr.Row():
#         with gr.Column():
#             gr.Markdown(topics)  # Show the topics on the left side
#     with gr.Row():
#         with gr.Column():
#             question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
#             answer = gr.Textbox(label="GreenGuide Response", placeholder="GreenGuide will respond here...", interactive=False, lines=10)
#             submit_button = gr.Button("Submit")
#             submit_button.click(fn=query_model, inputs=question, outputs=answer)
    

# # Launch the Gradio app to allow user interaction
# demo.launch(share=True)