Spaces:
Sleeping
Sleeping
File size: 13,558 Bytes
1cc6224 8023629 ff9d83f 1cc6224 8023629 1cc6224 8023629 ff9d83f 1cc6224 ff9d83f 1cc6224 8023629 1cc6224 2491006 1cc6224 2491006 8023629 1cc6224 5d76074 db9167c 5d76074 74a12f1 5d76074 1cc6224 5415e05 2491006 5415e05 2491006 5415e05 2491006 5415e05 3090e09 1cc6224 2491006 62fea81 1cc6224 34e8e79 1cc6224 2491006 1cc6224 2491006 9e32b65 2491006 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "You are a eco-friendly travel chatbot specialized in providing information on eco-friendly restaurants, hotels, and attractions in NYC."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's capability in providing eco-friendly travel information.
"""
try:
user_message = f"Here's the information on eco-friendly travel information: {relevant_segment}"
# Append user's message to messages list
messages.append({"role": "user", "content": user_message})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=150,
temperature=0.2,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
# Extract the response text
output_text = response['choices'][0]['message']['content'].strip()
# Append assistant's message to messages list for context
messages.append({"role": "assistant", "content": output_text})
return output_text
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to GreenGuide! Ask me anything about eco-friendly hotels, restaurants, and things to do in NYC."
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Could not find specific information. Please refine your question."
response = generate_response(question, relevant_segment)
return response
# Define the HTML iframe content
iframe = '''
<iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d193595.2528001417!2d-74.1444872802558!3d40.69763123330436!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x89c24fa5d33f083b%3A0xc80b8f06e177fe62!2sNew%20York%2C%20NY!5e0!3m2!1sen!2sus!4v1722483445443!5m2!1sen!2sus" width="600" height="450" style="border:0;" allowfullscreen="" loading="lazy" referrerpolicy="no-referrer-when-downgrade"></iframe>
'''
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# 🌱 Welcome to GreenGuide!
## Your AI-driven assistant for all eco-friendly travel-related queries in NYC. Created by Eva, Amy, and Ambur of the 2024 Kode With Klossy NYC AI/ML Camp.
"""
topics = """
### Feel free to ask me anything things to do in the city!
- Hotels (affordable, luxury)
- Restaurants (regular, vegetarian, vegan)
- Parks & Gardens
- Thrift Stores
- Attractions
"""
# Create a Gradio HTML component
def display_iframe():
return iframe
def display_image():
return "https://i.giphy.com/media/v1.Y2lkPTc5MGI3NjExZzdqMnkzcWpjbGhmM3hzcXp0MGpuaTF5djR4bjBxM3Biam5zbzNnMCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9cw/GxMnTi3hV3qaIgbgQL/giphy.gif"
#return "https://cdn-uploads.huggingface.co/production/uploads/6668622b72b61ba78fe7d4bb/PkWjNxvGm9MOqGkZdiT4e.png"
theme = gr.themes.Monochrome(
primary_hue="amber", #okay this did NOT work lmaoo
secondary_hue="rose",
).set(
background_fill_primary='#CBE9A2', # BACKGROUND
background_fill_primary_dark='#768550',
background_fill_secondary='#768550', # BUTTON HOVER
background_fill_secondary_dark='#99a381', #LOADING BAR
border_color_accent='#768550',
border_color_accent_dark='#768550',
border_color_accent_subdued='#768550',
border_color_primary='#03a9f4',
block_border_color='#b3e5fc',
button_primary_background_fill='#768550',
button_primary_background_fill_dark='#768550'
)
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
gr.Image("header.png", show_label = False, show_share_button = False, show_download_button = False) #CHANGE !!
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
answer = gr.Textbox(label="GreenGuide Response", placeholder="GreenGuide will respond here...", interactive=False, lines=10)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
gr.HTML(iframe)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
# import gradio as gr
# from sentence_transformers import SentenceTransformer, util
# import openai
# import os
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
# # Initialize paths and model identifiers for easy configuration and maintenance
# filename = "output_topic_details.txt" # Path to the file storing chess-specific details
# retrieval_model_name = 'output/sentence-transformer-finetuned/'
# openai.api_key = os.environ["OPENAI_API_KEY"]
# system_message = "You are a eco-friendly travel chatbot specialized in providing information on eco-friendly restaurants, hotels, and attractions in NYC."
# # Initial system message to set the behavior of the assistant
# messages = [{"role": "system", "content": system_message}]
# # Attempt to load the necessary models and provide feedback on success or failure
# try:
# retrieval_model = SentenceTransformer(retrieval_model_name)
# print("Models loaded successfully.")
# except Exception as e:
# print(f"Failed to load models: {e}")
# def load_and_preprocess_text(filename):
# """
# Load and preprocess text from a file, removing empty lines and stripping whitespace.
# """
# try:
# with open(filename, 'r', encoding='utf-8') as file:
# segments = [line.strip() for line in file if line.strip()]
# print("Text loaded and preprocessed successfully.")
# return segments
# except Exception as e:
# print(f"Failed to load or preprocess text: {e}")
# return []
# segments = load_and_preprocess_text(filename)
# def find_relevant_segment(user_query, segments):
# """
# Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
# This version finds the best match based on the content of the query.
# """
# try:
# # Lowercase the query for better matching
# lower_query = user_query.lower()
# # Encode the query and the segments
# query_embedding = retrieval_model.encode(lower_query)
# segment_embeddings = retrieval_model.encode(segments)
# # Compute cosine similarities between the query and the segments
# similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# # Find the index of the most similar segment
# best_idx = similarities.argmax()
# # Return the most relevant segment
# return segments[best_idx]
# except Exception as e:
# print(f"Error in finding relevant segment: {e}")
# return ""
# def generate_response(user_query, relevant_segment):
# """
# Generate a response emphasizing the bot's capability in providing eco-friendly travel information.
# """
# try:
# user_message = f"Here's the information on eco-friendly travel information: {relevant_segment}"
# # Append user's message to messages list
# messages.append({"role": "user", "content": user_message})
# response = openai.ChatCompletion.create(
# model="gpt-3.5-turbo",
# messages=messages,
# max_tokens=150,
# temperature=0.2,
# top_p=1,
# frequency_penalty=0,
# presence_penalty=0
# )
# # Extract the response text
# output_text = response['choices'][0]['message']['content'].strip()
# # Append assistant's message to messages list for context
# messages.append({"role": "assistant", "content": output_text})
# return output_text
# except Exception as e:
# print(f"Error in generating response: {e}")
# return f"Error in generating response: {e}"
# def query_model(question):
# """
# Process a question, find relevant information, and generate a response.
# """
# if question == "":
# return "Welcome to GreenGuide! Ask me anything about eco-friendly hotels, restaurants, and things to do in NYC."
# relevant_segment = find_relevant_segment(question, segments)
# if not relevant_segment:
# return "Could not find specific information. Please refine your question."
# response = generate_response(question, relevant_segment)
# return response
# # Define the welcome message and specific topics the chatbot can provide information about
# welcome_message = """
# # ♟️ Welcome to GreenGuide!
# ## Your AI-driven assistant for all eco-friendly travel-related queries in NYC. Created by Eva, Amy, and Ambur of the 2024 Kode With Klossy NYC AI/ML Camp.
# """
# topics = """
# ### Feel free to ask me anything things to do in the city!
# - Hotels (affordable, luxury)
# - Restaurants (regular, vegetarian, vegan)
# - Parks & Gardens
# - Thrift Stores
# - Attractions
# """
# # Create a Gradio HTML component
# def display_iframe():
# return iframe
# def display_image():
# return "https://cdn-uploads.huggingface.co/production/uploads/6668622b72b61ba78fe7d4bb/PkWjNxvGm9MOqGkZdiT4e.png"
# theme = gr.themes.Monochrome(
# primary_hue="amber",
# secondary_hue="rose",
# ).set(
# background_fill_primary='*primary_200',
# background_fill_primary_dark='*primary_200',
# background_fill_secondary='*secondary_300',
# background_fill_secondary_dark='*secondary_300',
# border_color_accent='*secondary_200',
# border_color_accent_dark='*secondary_600',
# border_color_accent_subdued='*secondary_200',
# border_color_primary='*secondary_300',
# block_border_color='*secondary_200',
# button_primary_background_fill='*secondary_300',
# button_primary_background_fill_dark='*secondary_300'
# )
# # Setup the Gradio Blocks interface with custom layout components
# with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
# gr.Markdown(welcome_message) # Display the formatted welcome message
# with gr.Row():
# with gr.Column():
# gr.Markdown(topics) # Show the topics on the left side
# with gr.Row():
# with gr.Column():
# question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
# answer = gr.Textbox(label="GreenGuide Response", placeholder="GreenGuide will respond here...", interactive=False, lines=10)
# submit_button = gr.Button("Submit")
# submit_button.click(fn=query_model, inputs=question, outputs=answer)
# # Launch the Gradio app to allow user interaction
# demo.launch(share=True)
|