Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,074 Bytes
7fe98ab d61a0bc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 d61a0bc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d191aca d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 7fe98ab 6c12bfc d8bb216 6c12bfc d8bb216 626b672 6c12bfc 626b672 d8bb216 626b672 d8bb216 c942f44 626b672 6c12bfc d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 d191aca 6c12bfc d8bb216 626b672 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc 626b672 d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 6c12bfc d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 6c12bfc 626b672 d8bb216 6c12bfc 626b672 d8bb216 626b672 d8bb216 6c12bfc d8bb216 626b672 d8bb216 6c12bfc d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 d8bb216 6c12bfc 7fe98ab 626b672 2eea82e 626b672 6c12bfc 626b672 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 2eea82e d8bb216 2eea82e 6c12bfc d8bb216 7fe98ab 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 626b672 d8bb216 6c12bfc d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 d8bb216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import gradio as gr
import torch
import numpy as np
import random
import os
import yaml
from pathlib import Path
import imageio
import tempfile
from PIL import Image
from huggingface_hub import hf_hub_download
import shutil
# --- Import necessary classes from the provided files ---
from inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
get_device,
calculate_padding,
load_media_file
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
# --- Global constants from user's request and YAML ---
YAML_CONFIG_STRING = """
pipeline_type: multi-scale
checkpoint_path: "ltxv-13b-0.9.7-distilled.safetensors" # This will be replaced by the rc3 version
downscale_factor: 0.6666666
spatial_upscaler_model_path: "ltxv-spatial-upscaler-0.9.7.safetensors"
stg_mode: "attention_values" # options: "attention_values", "attention_skip", "residual", "transformer_block"
decode_timestep: 0.05
decode_noise_scale: 0.025
text_encoder_model_name_or_path: "PixArt-alpha/PixArt-XL-2-1024-MS"
precision: "bfloat16"
sampler: "from_checkpoint" # options: "uniform", "linear-quadratic", "from_checkpoint"
prompt_enhancement_words_threshold: 120
prompt_enhancer_image_caption_model_name_or_path: "MiaoshouAI/Florence-2-large-PromptGen-v2.0"
prompt_enhancer_llm_model_name_or_path: "unsloth/Llama-3.2-3B-Instruct"
stochastic_sampling: false
first_pass:
timesteps: [1.0000, 0.9937, 0.9875, 0.9812, 0.9750, 0.9094, 0.7250]
guidance_scale: 1
stg_scale: 0
rescaling_scale: 1
skip_block_list: [42]
second_pass:
timesteps: [0.9094, 0.7250, 0.4219]
guidance_scale: 1
stg_scale: 0
rescaling_scale: 1
skip_block_list: [42]
"""
PIPELINE_CONFIG_YAML = yaml.safe_load(YAML_CONFIG_STRING)
# Model specific paths (to be downloaded)
DISTILLED_MODEL_REPO = "LTX-Colab/LTX-Video-Preview"
DISTILLED_MODEL_FILENAME = "ltxv-13b-0.9.7-distilled-rc3.safetensors"
UPSCALER_REPO = "Lightricks/LTX-Video"
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
MAX_NUM_FRAMES = 257
# --- Global variables for loaded models ---
pipeline_instance = None
latent_upsampler_instance = None
models_dir = "downloaded_models_gradio_cpu_init"
Path(models_dir).mkdir(parents=True, exist_ok=True)
print("Downloading models (if not present)...")
distilled_model_actual_path = hf_hub_download(
repo_id=DISTILLED_MODEL_REPO,
filename=DISTILLED_MODEL_FILENAME,
local_dir=models_dir,
local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
print(f"Distilled model path: {distilled_model_actual_path}")
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
spatial_upscaler_actual_path = hf_hub_download(
repo_id=UPSCALER_REPO,
filename=SPATIAL_UPSCALER_FILENAME,
local_dir=models_dir,
local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
print(f"Spatial upscaler model path: {spatial_upscaler_actual_path}")
print("Creating LTX Video pipeline on CPU...")
pipeline_instance = create_ltx_video_pipeline(
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
precision=PIPELINE_CONFIG_YAML["precision"],
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
sampler=PIPELINE_CONFIG_YAML["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
)
print("LTX Video pipeline created on CPU.")
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
print("Creating latent upsampler on CPU...")
latent_upsampler_instance = create_latent_upsampler(
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
device="cpu"
)
print("Latent upsampler created on CPU.")
def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath,
height_ui, width_ui, mode,
ui_steps, num_frames_ui,
ui_frames_to_use,
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
progress=gr.Progress(track_ τότε=True)):
target_inference_device = get_device()
print(f"Target inference device: {target_inference_device}")
if randomize_seed:
seed_ui = random.randint(0, 2**32 - 1)
seed_everething(int(seed_ui))
actual_height = int(height_ui)
actual_width = int(width_ui)
actual_num_frames = int(num_frames_ui)
height_padded = ((actual_height - 1) // 32 + 1) * 32
width_padded = ((actual_width - 1) // 32 + 1) * 32
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
call_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height_padded,
"width": width_padded,
"num_frames": num_frames_padded,
"frame_rate": 30,
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
"output_type": "pt", # Crucial: pipeline will output [0,1] range tensors
"conditioning_items": None,
"media_items": None,
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
"image_cond_noise_scale": 0.15,
"is_video": True,
"vae_per_channel_normalize": True,
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
"offload_to_cpu": False,
"enhance_prompt": False,
}
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
if stg_mode_str.lower() in ["stg_av", "attention_values"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
elif stg_mode_str.lower() in ["stg_r", "residual"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
else:
raise ValueError(f"Invalid stg_mode: {stg_mode_str}")
if mode == "image-to-video" and input_image_filepath:
try:
media_tensor = load_image_to_tensor_with_resize_and_crop(
input_image_filepath, actual_height, actual_width
)
media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
except Exception as e:
print(f"Error loading image {input_image_filepath}: {e}")
raise gr.Error(f"Could not load image: {e}")
elif mode == "video-to-video" and input_video_filepath:
try:
call_kwargs["media_items"] = load_media_file(
media_path=input_video_filepath,
height=actual_height,
width=actual_width,
max_frames=int(ui_frames_to_use),
padding=padding_values
).to(target_inference_device)
except Exception as e:
print(f"Error loading video {input_video_filepath}: {e}")
raise gr.Error(f"Could not load video: {e}")
print(f"Moving models to {target_inference_device} for inference...")
pipeline_instance.to(target_inference_device)
active_latent_upsampler = None
if improve_texture_flag and latent_upsampler_instance:
latent_upsampler_instance.to(target_inference_device)
active_latent_upsampler = latent_upsampler_instance
print("Models moved.")
result_images_tensor = None
try:
if improve_texture_flag:
if not active_latent_upsampler:
raise gr.Error("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
first_pass_args["guidance_scale"] = float(ui_guidance_scale)
if "timesteps" not in first_pass_args:
first_pass_args["num_inference_steps"] = int(ui_steps)
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
second_pass_args["guidance_scale"] = float(ui_guidance_scale)
multi_scale_call_kwargs = call_kwargs.copy()
multi_scale_call_kwargs.update({
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
"first_pass": first_pass_args,
"second_pass": second_pass_args,
})
print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}) on {target_inference_device}")
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
else:
single_pass_call_kwargs = call_kwargs.copy()
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
single_pass_call_kwargs["num_inference_steps"] = int(ui_steps)
single_pass_call_kwargs.pop("first_pass", None)
single_pass_call_kwargs.pop("second_pass", None)
single_pass_call_kwargs.pop("downscale_factor", None)
print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}) on {target_inference_device}")
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
finally:
print(f"Moving models back to CPU...")
pipeline_instance.to("cpu")
if active_latent_upsampler:
active_latent_upsampler.to("cpu")
if target_inference_device == "cuda":
torch.cuda.empty_cache()
print("Models moved back to CPU and cache cleared (if CUDA).")
if result_images_tensor is None:
raise gr.Error("Generation failed.")
pad_left, pad_right, pad_top, pad_bottom = padding_values
slice_h_end = -pad_bottom if pad_bottom > 0 else None
slice_w_end = -pad_right if pad_right > 0 else None
result_images_tensor = result_images_tensor[
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
]
# The pipeline with output_type="pt" should return tensors in the [0, 1] range.
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
# Clip to ensure values are indeed in [0, 1] before scaling to uint8
video_np = np.clip(video_np, 0, 1)
video_np = (video_np * 255).astype(np.uint8)
temp_dir = tempfile.mkdtemp()
timestamp = random.randint(10000,99999)
output_video_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
try:
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
for frame_idx in range(video_np.shape[0]):
progress(frame_idx / video_np.shape[0], desc="Saving video")
video_writer.append_data(video_np[frame_idx])
except Exception as e:
print(f"Error saving video with macro_block_size=1: {e}")
try:
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer:
for frame_idx in range(video_np.shape[0]):
progress(frame_idx / video_np.shape[0], desc="Saving video (fallback ffmpeg)")
video_writer.append_data(video_np[frame_idx])
except Exception as e2:
print(f"Fallback video saving error: {e2}")
raise gr.Error(f"Failed to save video: {e2}")
if isinstance(input_image_filepath, tempfile._TemporaryFileWrapper):
if os.path.exists(input_image_filepath.name): # Check if it's already closed by Gradio
try:
input_image_filepath.close()
os.remove(input_image_filepath.name)
except: pass # May already be closed/removed
elif input_image_filepath and os.path.exists(input_image_filepath) and input_image_filepath.startswith(tempfile.gettempdir()):
try: os.remove(input_image_filepath) # If Gradio passed a path to a temp file
except: pass
if isinstance(input_video_filepath, tempfile._TemporaryFileWrapper):
if os.path.exists(input_video_filepath.name):
try:
input_video_filepath.close()
os.remove(input_video_filepath.name)
except: pass
elif input_video_filepath and os.path.exists(input_video_filepath) and input_video_filepath.startswith(tempfile.gettempdir()):
try: os.remove(input_video_filepath)
except: pass
return output_video_path
# --- Gradio UI Definition ---
css="""
#col-container {
margin: 0 auto;
max-width: 900px;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Glass()) as demo:
gr.Markdown("# LTX Video 0.9.7 Distilled (using LTX-Video lib)")
gr.Markdown("Generates a short video based on text prompt, image, or existing video. Models are moved to GPU during generation and back to CPU afterwards to save VRAM.")
with gr.Row():
with gr.Column():
with gr.Group():
with gr.Tab("text-to-video") as text_tab:
image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None)
video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None)
t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3)
t2v_button = gr.Button("Generate Text-to-Video", variant="primary")
with gr.Tab("image-to-video") as image_tab:
video_i_hidden = gr.Textbox(label="video_i", visible=False, value=None)
image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam"])
i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3)
i2v_button = gr.Button("Generate Image-to-Video", variant="primary")
with gr.Tab("video-to-video") as video_tab:
image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None)
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"])
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8, info="Number of initial frames to use for conditioning/transformation. Must be N*8+1.")
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3)
v2v_button = gr.Button("Generate Video-to-Video", variant="primary")
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True, info="Uses a two-pass generation for better quality, but is slower. Recommended for final output.")
with gr.Column():
output_video = gr.Video(label="Generated Video", interactive=False)
gr.Markdown("Note: Generation can take a few minutes depending on settings and hardware.")
with gr.Accordion("Advanced settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2)
with gr.Row():
seed_input = gr.Number(label="Seed", value=42, precision=0, minimum=0, maximum=2**32-1)
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=False)
with gr.Row():
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.")
default_steps = len(PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps", [1]*7))
steps_input = gr.Slider(label="Inference Steps (for first pass if multi-scale)", minimum=1, maximum=30, value=default_steps, step=1, info="Number of denoising steps. More steps can improve quality but increase time. If YAML defines 'timesteps' for a pass, this UI value is ignored for that pass.")
with gr.Row():
num_frames_input = gr.Slider(label="Number of Frames to Generate", minimum=9, maximum=MAX_NUM_FRAMES, value=25, step=8, info="Total frames in the output video. Should be N*8+1 (e.g., 9, 17, 25...).")
with gr.Row():
height_input = gr.Slider(label="Height", value=512, step=32, minimum=256, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
width_input = gr.Slider(label="Width", value=704, step=32, minimum=256, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden,
height_input, width_input, gr.State("text-to-video"),
steps_input, num_frames_input, gr.State(0),
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden,
height_input, width_input, gr.State("image-to-video"),
steps_input, num_frames_input, gr.State(0),
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v,
height_input, width_input, gr.State("video-to-video"),
steps_input, num_frames_input, frames_to_use,
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video], api_name="text_to_video")
i2v_button.click(fn=generate, inputs=i2v_inputs, outputs=[output_video], api_name="image_to_video")
v2v_button.click(fn=generate, inputs=v2v_inputs, outputs=[output_video], api_name="video_to_video")
if __name__ == "__main__":
if os.path.exists(models_dir) and os.path.isdir(models_dir):
print(f"Model directory: {Path(models_dir).resolve()}")
demo.queue().launch(debug=True, share=False) |