File size: 19,654 Bytes
7fe98ab
 
d61a0bc
d8bb216
6c12bfc
 
 
d8bb216
 
 
6c12bfc
d8bb216
d61a0bc
d8bb216
6c12bfc
 
 
d8bb216
6c12bfc
d8bb216
6c12bfc
d8bb216
6c12bfc
d8bb216
6c12bfc
d191aca
d8bb216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fe98ab
6c12bfc
d8bb216
 
 
 
 
6c12bfc
d8bb216
 
6c12bfc
d8bb216
 
 
 
 
 
 
 
 
 
 
c942f44
d8bb216
6c12bfc
d8bb216
 
 
 
 
 
 
d191aca
6c12bfc
d8bb216
 
 
 
 
70c8ddd
6c12bfc
d8bb216
 
 
6c12bfc
d8bb216
 
 
 
 
 
 
 
6c12bfc
d8bb216
 
 
6c12bfc
 
d8bb216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c12bfc
 
d8bb216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c12bfc
d8bb216
e1d5bb5
d8bb216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1d5bb5
d8bb216
 
 
6c12bfc
d8bb216
 
 
 
 
 
 
 
6c12bfc
d8bb216
 
 
 
 
 
ddd3c88
d8bb216
 
 
 
 
 
6c12bfc
 
d8bb216
 
 
 
6c12bfc
d8bb216
 
 
6c12bfc
d8bb216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c12bfc
7fe98ab
d8bb216
2eea82e
 
 
 
 
 
 
d8bb216
6c12bfc
d8bb216
6c12bfc
 
 
 
d8bb216
 
 
 
 
6c12bfc
d8bb216
 
 
 
6c12bfc
d8bb216
 
 
 
 
2eea82e
d8bb216
2eea82e
6c12bfc
d8bb216
 
7fe98ab
6c12bfc
d8bb216
6c12bfc
d8bb216
 
6c12bfc
d8bb216
 
 
 
 
6c12bfc
d8bb216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import gradio as gr
import torch
import numpy as np
import random
import os
import yaml
from pathlib import Path
import imageio
import tempfile
from PIL import Image
from huggingface_hub import hf_hub_download
import shutil

# --- Import necessary classes from the provided files ---
from inference import (
    create_ltx_video_pipeline,
    create_latent_upsampler,
    load_image_to_tensor_with_resize_and_crop,
    seed_everething,
    get_device,
    calculate_padding,
    load_media_file
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy

# --- Global constants from user's request and YAML ---
YAML_CONFIG_STRING = """
pipeline_type: multi-scale
checkpoint_path: "ltxv-13b-0.9.7-distilled.safetensors" # This will be replaced by the rc3 version
downscale_factor: 0.6666666
spatial_upscaler_model_path: "ltxv-spatial-upscaler-0.9.7.safetensors"
stg_mode: "attention_values" # options: "attention_values", "attention_skip", "residual", "transformer_block"
decode_timestep: 0.05
decode_noise_scale: 0.025
text_encoder_model_name_or_path: "PixArt-alpha/PixArt-XL-2-1024-MS"
precision: "bfloat16"
sampler: "from_checkpoint" # options: "uniform", "linear-quadratic", "from_checkpoint"
prompt_enhancement_words_threshold: 120
prompt_enhancer_image_caption_model_name_or_path: "MiaoshouAI/Florence-2-large-PromptGen-v2.0"
prompt_enhancer_llm_model_name_or_path: "unsloth/Llama-3.2-3B-Instruct"
stochastic_sampling: false

first_pass:
  timesteps: [1.0000, 0.9937, 0.9875, 0.9812, 0.9750, 0.9094, 0.7250]
  guidance_scale: 1
  stg_scale: 0
  rescaling_scale: 1
  skip_block_list: [42]

second_pass:
  timesteps: [0.9094, 0.7250, 0.4219]
  guidance_scale: 1
  stg_scale: 0
  rescaling_scale: 1
  skip_block_list: [42]
"""
PIPELINE_CONFIG_YAML = yaml.safe_load(YAML_CONFIG_STRING)

# Model specific paths (to be downloaded)
DISTILLED_MODEL_REPO = "LTX-Colab/LTX-Video-Preview"
DISTILLED_MODEL_FILENAME = "ltxv-13b-0.9.7-distilled-rc3.safetensors"

UPSCALER_REPO = "Lightricks/LTX-Video"
# SPATIAL_UPSCALER_FILENAME will be taken from PIPELINE_CONFIG_YAML after it's loaded

MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280) # Max width/height from UI
MAX_NUM_FRAMES = 257 # From inference.py

# --- Global variables for loaded models ---
pipeline_instance = None
latent_upsampler_instance = None
current_device = get_device()
models_dir = "downloaded_models_gradio" # Use a distinct name
Path(models_dir).mkdir(parents=True, exist_ok=True)

# Download models and update config paths
print(f"Using device: {current_device}")
print("Downloading models...")

distilled_model_actual_path = hf_hub_download(
    repo_id=DISTILLED_MODEL_REPO,
    filename=DISTILLED_MODEL_FILENAME,
    local_dir=models_dir,
    local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
print(f"Distilled model downloaded to: {distilled_model_actual_path}")

SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
spatial_upscaler_actual_path = hf_hub_download(
    repo_id=UPSCALER_REPO,
    filename=SPATIAL_UPSCALER_FILENAME,
    local_dir=models_dir,
    local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
print(f"Spatial upscaler model downloaded to: {spatial_upscaler_actual_path}")

# Load pipelines
print("Creating LTX Video pipeline...")
pipeline_instance = create_ltx_video_pipeline(
    ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
    precision=PIPELINE_CONFIG_YAML["precision"],
    text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
    sampler=PIPELINE_CONFIG_YAML["sampler"],
    device=current_device,
    enhance_prompt=False, # Prompt enhancement handled by UI choice / Gradio logic if desired
    prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
    prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
)
print("LTX Video pipeline created.")

if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
    print("Creating latent upsampler...")
    latent_upsampler_instance = create_latent_upsampler(
        PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
        device=current_device
    )
    print("Latent upsampler created.")


def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath,
             height_ui, width_ui, mode,
             ui_steps, num_frames_ui,
             ui_frames_to_use,
             seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
             progress=gr.Progress(track_tqdm=True)):

    if randomize_seed:
        seed_ui = random.randint(0, 2**32 - 1)
    seed_everething(int(seed_ui))
    
    actual_height = int(height_ui)
    actual_width = int(width_ui)
    actual_num_frames = int(num_frames_ui)

    # Padded dimensions for pipeline
    height_padded = ((actual_height - 1) // 32 + 1) * 32
    width_padded = ((actual_width - 1) // 32 + 1) * 32
    num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
    
    padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)

    call_kwargs = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "height": height_padded, # Use padded for pipeline
        "width": width_padded,   # Use padded for pipeline
        "num_frames": num_frames_padded, # Use padded for pipeline
        "frame_rate": 30, 
        "generator": torch.Generator(device=current_device).manual_seed(int(seed_ui)),
        "output_type": "pt",
        "conditioning_items": None,
        "media_items": None,
        "decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
        "decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
        "stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
        "image_cond_noise_scale": 0.15, # from inference.py defaults
        "is_video": True, # Assume video output
        "vae_per_channel_normalize": True, # from inference.py defaults
        "mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
        "offload_to_cpu": False, # For Gradio, keep on device
        "enhance_prompt": False, # Assuming no UI for this yet, stick to YAML or handle separately
    }

    stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
    if stg_mode_str.lower() in ["stg_av", "attention_values"]:
        call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
    elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
        call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
    elif stg_mode_str.lower() in ["stg_r", "residual"]:
        call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
    elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
        call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
    else:
        raise ValueError(f"Invalid stg_mode: {stg_mode_str}")

    if mode == "image-to-video" and input_image_filepath:
        try:
            # Ensure the input image is loaded with original H/W for correct aspect ratio handling by the function
            media_tensor = load_image_to_tensor_with_resize_and_crop(
                input_image_filepath, actual_height, actual_width
            )
            media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
            call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(current_device), 0, 1.0)]
        except Exception as e:
            print(f"Error loading image {input_image_filepath}: {e}")
            raise gr.Error(f"Could not load image: {e}")


    elif mode == "video-to-video" and input_video_filepath:
        try:
            call_kwargs["media_items"] = load_media_file(
                media_path=input_video_filepath,
                height=actual_height, 
                width=actual_width,
                max_frames=int(ui_frames_to_use),
                padding=padding_values
            ).to(current_device)
        except Exception as e:
            print(f"Error loading video {input_video_filepath}: {e}")
            raise gr.Error(f"Could not load video: {e}")
    
    # Multi-scale or single-scale pipeline call
    if improve_texture_flag:
        if not latent_upsampler_instance:
            raise gr.Error("Spatial upscaler model not loaded, cannot use multi-scale.")
        
        multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, latent_upsampler_instance)
        
        # Prepare pass-specific arguments, overriding with UI inputs where appropriate
        first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
        first_pass_args["guidance_scale"] = float(ui_guidance_scale)
        if "timesteps" not in first_pass_args: # Only if YAML doesn't define timesteps
            first_pass_args["num_inference_steps"] = int(ui_steps)

        second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
        second_pass_args["guidance_scale"] = float(ui_guidance_scale)
        # num_inference_steps for second pass is typically determined by its YAML timesteps

        multi_scale_call_kwargs = call_kwargs.copy()
        multi_scale_call_kwargs.update({
            "downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
            "first_pass": first_pass_args,
            "second_pass": second_pass_args,
        })
        
        print(f"Calling multi-scale pipeline with effective height={actual_height}, width={actual_width}")
        result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
    else:
        # Single pass call (using base pipeline)
        single_pass_call_kwargs = call_kwargs.copy()
        single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
        
        # For single pass, if YAML doesn't have top-level timesteps, use ui_steps
        # The current YAML is multi-scale focused, so it lacks top-level step control.
        # We'll assume for a base call, num_inference_steps is directly taken from UI.
        single_pass_call_kwargs["num_inference_steps"] = int(ui_steps)
        # Remove pass-specific args if they accidentally slipped in
        single_pass_call_kwargs.pop("first_pass", None)
        single_pass_call_kwargs.pop("second_pass", None)
        single_pass_call_kwargs.pop("downscale_factor", None)
        
        print(f"Calling base pipeline with height={height_padded}, width={width_padded}")
        result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images

    # Crop to original requested dimensions (num_frames, height, width)
    # Padding: (pad_left, pad_right, pad_top, pad_bottom)
    pad_left, pad_right, pad_top, pad_bottom = padding_values
    
    # Calculate slice indices, ensuring they don't go negative if padding was zero
    slice_h_end = -pad_bottom if pad_bottom > 0 else None
    slice_w_end = -pad_right if pad_right > 0 else None

    result_images_tensor = result_images_tensor[
        :, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
    ]

    # Convert tensor to video file
    video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
    video_np = np.clip(video_np * 0.5 + 0.5, 0, 1) # from [-1,1] to [0,1]
    video_np = (video_np * 255).astype(np.uint8)

    temp_dir = tempfile.mkdtemp()
    timestamp = random.randint(10000,99999) # Add timestamp to avoid caching issues
    output_video_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
    
    try:
        with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
            for frame_idx in range(video_np.shape[0]):
                progress(frame_idx / video_np.shape[0], desc="Saving video")
                video_writer.append_data(video_np[frame_idx])
    except Exception as e:
        print(f"Error saving video: {e}")
        # Fallback to saving frame by frame if container issue
        try:
            with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8, macro_block_size=None) as video_writer:
                 for frame_idx in range(video_np.shape[0]):
                    progress(frame_idx / video_np.shape[0], desc="Saving video (fallback)")
                    video_writer.append_data(video_np[frame_idx])
        except Exception as e2:
            print(f"Fallback video saving error: {e2}")
            raise gr.Error(f"Failed to save video: {e2}")


    # Clean up temporary image/video files if they were created by Gradio
    if isinstance(input_image_filepath, tempfile._TemporaryFileWrapper):
        input_image_filepath.close()
        if os.path.exists(input_image_filepath.name):
            os.remove(input_image_filepath.name)
    if isinstance(input_video_filepath, tempfile._TemporaryFileWrapper):
        input_video_filepath.close()
        if os.path.exists(input_video_filepath.name):
            os.remove(input_video_filepath.name)
            
    return output_video_path

# --- Gradio UI Definition (from user) ---
css="""
#col-container {
    margin: 0 auto;
    max-width: 900px;
}
"""

with gr.Blocks(css=css, theme=gr.themes.Glass()) as demo: # Changed theme for variety
    gr.Markdown("# LTX Video 0.9.7 Distilled (using LTX-Video lib)")
    gr.Markdown("Generates a short video based on text prompt, image, or existing video.")
    with gr.Row():
        with gr.Column():
            with gr.Group():
                with gr.Tab("text-to-video") as text_tab:
                    # Hidden inputs for consistent generate() signature
                    image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None)
                    video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None)
                    t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3)
                    t2v_button = gr.Button("Generate Text-to-Video", variant="primary")
                with gr.Tab("image-to-video") as image_tab:
                    video_i_hidden = gr.Textbox(label="video_i", visible=False, value=None)
                    image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam"])
                    i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3)
                    i2v_button = gr.Button("Generate Image-to-Video", variant="primary")
                with gr.Tab("video-to-video") as video_tab:
                    image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None)
                    video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"])
                    frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8, info="Number of initial frames to use for conditioning/transformation. Must be N*8+1.")
                    v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3)
                    v2v_button = gr.Button("Generate Video-to-Video", variant="primary")

            improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True, info="Uses a two-pass generation for better quality, but is slower. Recommended for final output.")

        with gr.Column():
            output_video = gr.Video(label="Generated Video", interactive=False)
            gr.Markdown("Note: Generation can take a few minutes depending on settings and hardware.")

    with gr.Accordion("Advanced settings", open=False):
        negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2)
        with gr.Row():
            seed_input = gr.Number(label="Seed", value=42, precision=0, minimum=0, maximum=2**32-1)
            randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=False)
        with gr.Row():
            # For distilled models, CFG is often 1.0 (disabled) or very low.
            guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.")
            # Default to length of first_pass timesteps, if available
            default_steps = len(PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps", [1]*7)) # Fallback to 7 if not defined
            steps_input = gr.Slider(label="Inference Steps (for first pass if multi-scale)", minimum=1, maximum=30, value=default_steps, step=1, info="Number of denoising steps. More steps can improve quality but increase time. If YAML defines 'timesteps' for a pass, this UI value is ignored for that pass.")
        with gr.Row():
            num_frames_input = gr.Slider(label="Number of Frames to Generate", minimum=9, maximum=MAX_NUM_FRAMES, value=25, step=8, info="Total frames in the output video. Should be N*8+1 (e.g., 9, 17, 25...).")
        with gr.Row():
            height_input = gr.Slider(label="Height", value=512, step=32, minimum=256, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
            width_input = gr.Slider(label="Width", value=704, step=32, minimum=256, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
    
    # Define click actions
    # Note: gr.State passes the current value of the component without creating a UI element for it.
    # We use hidden Textbox inputs for image_n, video_n etc. and pass their `value` (which is None)
    # to ensure the `generate` function always receives these arguments.
    
    t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden,
                  height_input, width_input, gr.State("text-to-video"),
                  steps_input, num_frames_input, gr.State(0), # frames_to_use not relevant for t2v
                  seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
    
    i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden,
                  height_input, width_input, gr.State("image-to-video"),
                  steps_input, num_frames_input, gr.State(0), # frames_to_use not relevant for i2v initial frame
                  seed_input, randomize_seed_input, guidance_scale_input, improve_texture]

    v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v,
                  height_input, width_input, gr.State("video-to-video"),
                  steps_input, num_frames_input, frames_to_use,
                  seed_input, randomize_seed_input, guidance_scale_input, improve_texture]

    t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video])
    i2v_button.click(fn=generate, inputs=i2v_inputs, outputs=[output_video])
    v2v_button.click(fn=generate, inputs=v2v_inputs, outputs=[output_video])

if __name__ == "__main__":
    # Clean up old model directory if it exists from previous runs
    if os.path.exists(models_dir) and os.path.isdir(models_dir):
        print(f"Cleaning up old model directory: {models_dir}")
        # shutil.rmtree(models_dir) # Optional: uncomment to force re-download on every run
    Path(models_dir).mkdir(parents=True, exist_ok=True)
    
    demo.queue().launch(debug=True, share=False)