linoyts HF Staff commited on
Commit
c68eb98
·
verified ·
1 Parent(s): 01900db

Create pipeline_ltx_condition.py

Browse files
Files changed (1) hide show
  1. pipeline_ltx_condition.py +1194 -0
pipeline_ltx_condition.py ADDED
@@ -0,0 +1,1194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Lightricks and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from dataclasses import dataclass
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import PIL.Image
20
+ import torch
21
+ from transformers import T5EncoderModel, T5TokenizerFast
22
+
23
+ from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
24
+ from diffusers.image_processor import PipelineImageInput
25
+ from diffusers.loaders import FromSingleFileMixin, LTXVideoLoraLoaderMixin
26
+ from diffusers.models.autoencoders import AutoencoderKLLTXVideo
27
+ from diffusers.models.transformers import LTXVideoTransformer3DModel
28
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
29
+ from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
30
+ from diffusers.utils.torch_utils import randn_tensor
31
+ from diffusers.video_processor import VideoProcessor
32
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
33
+ from diffusers.pipelines.ltx.pipeline_output import LTXPipelineOutput
34
+
35
+
36
+ if is_torch_xla_available():
37
+ import torch_xla.core.xla_model as xm
38
+
39
+ XLA_AVAILABLE = True
40
+ else:
41
+ XLA_AVAILABLE = False
42
+
43
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
+
45
+ EXAMPLE_DOC_STRING = """
46
+ Examples:
47
+ ```py
48
+ >>> import torch
49
+ >>> from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXConditionPipeline, LTXVideoCondition
50
+ >>> from diffusers.utils import export_to_video, load_video, load_image
51
+
52
+ >>> pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.5", torch_dtype=torch.bfloat16)
53
+ >>> pipe.to("cuda")
54
+
55
+ >>> # Load input image and video
56
+ >>> video = load_video(
57
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input-vid.mp4"
58
+ ... )
59
+ >>> image = load_image(
60
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input.jpg"
61
+ ... )
62
+
63
+ >>> # Create conditioning objects
64
+ >>> condition1 = LTXVideoCondition(
65
+ ... image=image,
66
+ ... frame_index=0,
67
+ ... )
68
+ >>> condition2 = LTXVideoCondition(
69
+ ... video=video,
70
+ ... frame_index=80,
71
+ ... )
72
+
73
+ >>> prompt = "The video depicts a long, straight highway stretching into the distance, flanked by metal guardrails. The road is divided into multiple lanes, with a few vehicles visible in the far distance. The surrounding landscape features dry, grassy fields on one side and rolling hills on the other. The sky is mostly clear with a few scattered clouds, suggesting a bright, sunny day. And then the camera switch to a winding mountain road covered in snow, with a single vehicle traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. The landscape is characterized by rugged terrain and a river visible in the distance. The scene captures the solitude and beauty of a winter drive through a mountainous region."
74
+ >>> negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
75
+
76
+ >>> # Generate video
77
+ >>> generator = torch.Generator("cuda").manual_seed(0)
78
+ >>> # Text-only conditioning is also supported without the need to pass `conditions`
79
+ >>> video = pipe(
80
+ ... conditions=[condition1, condition2],
81
+ ... prompt=prompt,
82
+ ... negative_prompt=negative_prompt,
83
+ ... width=768,
84
+ ... height=512,
85
+ ... num_frames=161,
86
+ ... num_inference_steps=40,
87
+ ... generator=generator,
88
+ ... ).frames[0]
89
+
90
+ >>> export_to_video(video, "output.mp4", fps=24)
91
+ ```
92
+ """
93
+
94
+
95
+ @dataclass
96
+ class LTXVideoCondition:
97
+ """
98
+ Defines a single frame-conditioning item for LTX Video - a single frame or a sequence of frames.
99
+
100
+ Attributes:
101
+ image (`PIL.Image.Image`):
102
+ The image to condition the video on.
103
+ video (`List[PIL.Image.Image]`):
104
+ The video to condition the video on.
105
+ frame_index (`int`):
106
+ The frame index at which the image or video will conditionally effect the video generation.
107
+ strength (`float`, defaults to `1.0`):
108
+ The strength of the conditioning effect. A value of `1.0` means the conditioning effect is fully applied.
109
+ """
110
+
111
+ image: Optional[PIL.Image.Image] = None
112
+ video: Optional[List[PIL.Image.Image]] = None
113
+ frame_index: int = 0
114
+ strength: float = 1.0
115
+
116
+
117
+ # from LTX-Video/ltx_video/schedulers/rf.py
118
+ def linear_quadratic_schedule(num_steps, threshold_noise=0.025, linear_steps=None):
119
+ if linear_steps is None:
120
+ linear_steps = num_steps // 2
121
+ if num_steps < 2:
122
+ return torch.tensor([1.0])
123
+ linear_sigma_schedule = [i * threshold_noise / linear_steps for i in range(linear_steps)]
124
+ threshold_noise_step_diff = linear_steps - threshold_noise * num_steps
125
+ quadratic_steps = num_steps - linear_steps
126
+ quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps**2)
127
+ linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (quadratic_steps**2)
128
+ const = quadratic_coef * (linear_steps**2)
129
+ quadratic_sigma_schedule = [
130
+ quadratic_coef * (i**2) + linear_coef * i + const for i in range(linear_steps, num_steps)
131
+ ]
132
+ sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0]
133
+ sigma_schedule = [1.0 - x for x in sigma_schedule]
134
+ return torch.tensor(sigma_schedule[:-1])
135
+
136
+
137
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
138
+ def calculate_shift(
139
+ image_seq_len,
140
+ base_seq_len: int = 256,
141
+ max_seq_len: int = 4096,
142
+ base_shift: float = 0.5,
143
+ max_shift: float = 1.15,
144
+ ):
145
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
146
+ b = base_shift - m * base_seq_len
147
+ mu = image_seq_len * m + b
148
+ return mu
149
+
150
+
151
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
152
+ def retrieve_timesteps(
153
+ scheduler,
154
+ num_inference_steps: Optional[int] = None,
155
+ device: Optional[Union[str, torch.device]] = None,
156
+ timesteps: Optional[List[int]] = None,
157
+ sigmas: Optional[List[float]] = None,
158
+ **kwargs,
159
+ ):
160
+ r"""
161
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
162
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
163
+
164
+ Args:
165
+ scheduler (`SchedulerMixin`):
166
+ The scheduler to get timesteps from.
167
+ num_inference_steps (`int`):
168
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
169
+ must be `None`.
170
+ device (`str` or `torch.device`, *optional*):
171
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
172
+ timesteps (`List[int]`, *optional*):
173
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
174
+ `num_inference_steps` and `sigmas` must be `None`.
175
+ sigmas (`List[float]`, *optional*):
176
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
177
+ `num_inference_steps` and `timesteps` must be `None`.
178
+
179
+ Returns:
180
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
181
+ second element is the number of inference steps.
182
+ """
183
+ if timesteps is not None and sigmas is not None:
184
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
185
+ if timesteps is not None:
186
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
187
+ if not accepts_timesteps:
188
+ raise ValueError(
189
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
190
+ f" timestep schedules. Please check whether you are using the correct scheduler."
191
+ )
192
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
193
+ timesteps = scheduler.timesteps
194
+ num_inference_steps = len(timesteps)
195
+ elif sigmas is not None:
196
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
197
+ if not accept_sigmas:
198
+ raise ValueError(
199
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
200
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
201
+ )
202
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
203
+ timesteps = scheduler.timesteps
204
+ num_inference_steps = len(timesteps)
205
+ else:
206
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
207
+ timesteps = scheduler.timesteps
208
+ return timesteps, num_inference_steps
209
+
210
+
211
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
212
+ def retrieve_latents(
213
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
214
+ ):
215
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
216
+ return encoder_output.latent_dist.sample(generator)
217
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
218
+ return encoder_output.latent_dist.mode()
219
+ elif hasattr(encoder_output, "latents"):
220
+ return encoder_output.latents
221
+ else:
222
+ raise AttributeError("Could not access latents of provided encoder_output")
223
+
224
+
225
+ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixin):
226
+ r"""
227
+ Pipeline for text/image/video-to-video generation.
228
+
229
+ Reference: https://github.com/Lightricks/LTX-Video
230
+
231
+ Args:
232
+ transformer ([`LTXVideoTransformer3DModel`]):
233
+ Conditional Transformer architecture to denoise the encoded video latents.
234
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
235
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
236
+ vae ([`AutoencoderKLLTXVideo`]):
237
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
238
+ text_encoder ([`T5EncoderModel`]):
239
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
240
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
241
+ tokenizer (`CLIPTokenizer`):
242
+ Tokenizer of class
243
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
244
+ tokenizer (`T5TokenizerFast`):
245
+ Second Tokenizer of class
246
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
247
+ """
248
+
249
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
250
+ _optional_components = []
251
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
252
+
253
+ def __init__(
254
+ self,
255
+ scheduler: FlowMatchEulerDiscreteScheduler,
256
+ vae: AutoencoderKLLTXVideo,
257
+ text_encoder: T5EncoderModel,
258
+ tokenizer: T5TokenizerFast,
259
+ transformer: LTXVideoTransformer3DModel,
260
+ ):
261
+ super().__init__()
262
+
263
+ self.register_modules(
264
+ vae=vae,
265
+ text_encoder=text_encoder,
266
+ tokenizer=tokenizer,
267
+ transformer=transformer,
268
+ scheduler=scheduler,
269
+ )
270
+
271
+ self.vae_spatial_compression_ratio = (
272
+ self.vae.spatial_compression_ratio if getattr(self, "vae", None) is not None else 32
273
+ )
274
+ self.vae_temporal_compression_ratio = (
275
+ self.vae.temporal_compression_ratio if getattr(self, "vae", None) is not None else 8
276
+ )
277
+ self.transformer_spatial_patch_size = (
278
+ self.transformer.config.patch_size if getattr(self, "transformer", None) is not None else 1
279
+ )
280
+ self.transformer_temporal_patch_size = (
281
+ self.transformer.config.patch_size_t if getattr(self, "transformer") is not None else 1
282
+ )
283
+
284
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio)
285
+ self.tokenizer_max_length = (
286
+ self.tokenizer.model_max_length if getattr(self, "tokenizer", None) is not None else 128
287
+ )
288
+
289
+ self.default_height = 512
290
+ self.default_width = 704
291
+ self.default_frames = 121
292
+
293
+ def _get_t5_prompt_embeds(
294
+ self,
295
+ prompt: Union[str, List[str]] = None,
296
+ num_videos_per_prompt: int = 1,
297
+ max_sequence_length: int = 256,
298
+ device: Optional[torch.device] = None,
299
+ dtype: Optional[torch.dtype] = None,
300
+ ):
301
+ device = device or self._execution_device
302
+ dtype = dtype or self.text_encoder.dtype
303
+
304
+ prompt = [prompt] if isinstance(prompt, str) else prompt
305
+ batch_size = len(prompt)
306
+
307
+ text_inputs = self.tokenizer(
308
+ prompt,
309
+ padding="max_length",
310
+ max_length=max_sequence_length,
311
+ truncation=True,
312
+ add_special_tokens=True,
313
+ return_tensors="pt",
314
+ )
315
+ text_input_ids = text_inputs.input_ids
316
+ prompt_attention_mask = text_inputs.attention_mask
317
+ prompt_attention_mask = prompt_attention_mask.bool().to(device)
318
+
319
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
320
+
321
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
322
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
323
+ logger.warning(
324
+ "The following part of your input was truncated because `max_sequence_length` is set to "
325
+ f" {max_sequence_length} tokens: {removed_text}"
326
+ )
327
+
328
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)[0]
329
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
330
+
331
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
332
+ _, seq_len, _ = prompt_embeds.shape
333
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
334
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
335
+
336
+ prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
337
+ prompt_attention_mask = prompt_attention_mask.repeat(num_videos_per_prompt, 1)
338
+
339
+ return prompt_embeds, prompt_attention_mask
340
+
341
+ # Copied from diffusers.pipelines.mochi.pipeline_mochi.MochiPipeline.encode_prompt
342
+ def encode_prompt(
343
+ self,
344
+ prompt: Union[str, List[str]],
345
+ negative_prompt: Optional[Union[str, List[str]]] = None,
346
+ do_classifier_free_guidance: bool = True,
347
+ num_videos_per_prompt: int = 1,
348
+ prompt_embeds: Optional[torch.Tensor] = None,
349
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
350
+ prompt_attention_mask: Optional[torch.Tensor] = None,
351
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
352
+ max_sequence_length: int = 256,
353
+ device: Optional[torch.device] = None,
354
+ dtype: Optional[torch.dtype] = None,
355
+ ):
356
+ r"""
357
+ Encodes the prompt into text encoder hidden states.
358
+
359
+ Args:
360
+ prompt (`str` or `List[str]`, *optional*):
361
+ prompt to be encoded
362
+ negative_prompt (`str` or `List[str]`, *optional*):
363
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
364
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
365
+ less than `1`).
366
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
367
+ Whether to use classifier free guidance or not.
368
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
369
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
370
+ prompt_embeds (`torch.Tensor`, *optional*):
371
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
372
+ provided, text embeddings will be generated from `prompt` input argument.
373
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
374
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
375
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
376
+ argument.
377
+ device: (`torch.device`, *optional*):
378
+ torch device
379
+ dtype: (`torch.dtype`, *optional*):
380
+ torch dtype
381
+ """
382
+ device = device or self._execution_device
383
+
384
+ prompt = [prompt] if isinstance(prompt, str) else prompt
385
+ if prompt is not None:
386
+ batch_size = len(prompt)
387
+ else:
388
+ batch_size = prompt_embeds.shape[0]
389
+
390
+ if prompt_embeds is None:
391
+ prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
392
+ prompt=prompt,
393
+ num_videos_per_prompt=num_videos_per_prompt,
394
+ max_sequence_length=max_sequence_length,
395
+ device=device,
396
+ dtype=dtype,
397
+ )
398
+
399
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
400
+ negative_prompt = negative_prompt or ""
401
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
402
+
403
+ if prompt is not None and type(prompt) is not type(negative_prompt):
404
+ raise TypeError(
405
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
406
+ f" {type(prompt)}."
407
+ )
408
+ elif batch_size != len(negative_prompt):
409
+ raise ValueError(
410
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
411
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
412
+ " the batch size of `prompt`."
413
+ )
414
+
415
+ negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds(
416
+ prompt=negative_prompt,
417
+ num_videos_per_prompt=num_videos_per_prompt,
418
+ max_sequence_length=max_sequence_length,
419
+ device=device,
420
+ dtype=dtype,
421
+ )
422
+
423
+ return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
424
+
425
+ def check_inputs(
426
+ self,
427
+ prompt,
428
+ conditions,
429
+ image,
430
+ video,
431
+ frame_index,
432
+ strength,
433
+ height,
434
+ width,
435
+ callback_on_step_end_tensor_inputs=None,
436
+ prompt_embeds=None,
437
+ negative_prompt_embeds=None,
438
+ prompt_attention_mask=None,
439
+ negative_prompt_attention_mask=None,
440
+ ):
441
+ if height % 32 != 0 or width % 32 != 0:
442
+ raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
443
+
444
+ if callback_on_step_end_tensor_inputs is not None and not all(
445
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
446
+ ):
447
+ raise ValueError(
448
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
449
+ )
450
+
451
+ if prompt is not None and prompt_embeds is not None:
452
+ raise ValueError(
453
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
454
+ " only forward one of the two."
455
+ )
456
+ elif prompt is None and prompt_embeds is None:
457
+ raise ValueError(
458
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
459
+ )
460
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
461
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
462
+
463
+ if prompt_embeds is not None and prompt_attention_mask is None:
464
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
465
+
466
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
467
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
468
+
469
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
470
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
471
+ raise ValueError(
472
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
473
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
474
+ f" {negative_prompt_embeds.shape}."
475
+ )
476
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
477
+ raise ValueError(
478
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
479
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
480
+ f" {negative_prompt_attention_mask.shape}."
481
+ )
482
+
483
+ if conditions is not None and (image is not None or video is not None):
484
+ raise ValueError("If `conditions` is provided, `image` and `video` must not be provided.")
485
+
486
+ if conditions is None:
487
+ if isinstance(image, list) and isinstance(frame_index, list) and len(image) != len(frame_index):
488
+ raise ValueError(
489
+ "If `conditions` is not provided, `image` and `frame_index` must be of the same length."
490
+ )
491
+ elif isinstance(image, list) and isinstance(strength, list) and len(image) != len(strength):
492
+ raise ValueError("If `conditions` is not provided, `image` and `strength` must be of the same length.")
493
+ elif isinstance(video, list) and isinstance(frame_index, list) and len(video) != len(frame_index):
494
+ raise ValueError(
495
+ "If `conditions` is not provided, `video` and `frame_index` must be of the same length."
496
+ )
497
+ elif isinstance(video, list) and isinstance(strength, list) and len(video) != len(strength):
498
+ raise ValueError("If `conditions` is not provided, `video` and `strength` must be of the same length.")
499
+
500
+ @staticmethod
501
+ def _prepare_video_ids(
502
+ batch_size: int,
503
+ num_frames: int,
504
+ height: int,
505
+ width: int,
506
+ patch_size: int = 1,
507
+ patch_size_t: int = 1,
508
+ device: torch.device = None,
509
+ ) -> torch.Tensor:
510
+ latent_sample_coords = torch.meshgrid(
511
+ torch.arange(0, num_frames, patch_size_t, device=device),
512
+ torch.arange(0, height, patch_size, device=device),
513
+ torch.arange(0, width, patch_size, device=device),
514
+ indexing="ij",
515
+ )
516
+ latent_sample_coords = torch.stack(latent_sample_coords, dim=0)
517
+ latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
518
+ latent_coords = latent_coords.reshape(batch_size, -1, num_frames * height * width)
519
+
520
+ return latent_coords
521
+
522
+ @staticmethod
523
+ def _scale_video_ids(
524
+ video_ids: torch.Tensor,
525
+ scale_factor: int = 32,
526
+ scale_factor_t: int = 8,
527
+ frame_index: int = 0,
528
+ device: torch.device = None,
529
+ ) -> torch.Tensor:
530
+ scaled_latent_coords = (
531
+ video_ids
532
+ * torch.tensor([scale_factor_t, scale_factor, scale_factor], device=video_ids.device)[None, :, None]
533
+ )
534
+ scaled_latent_coords[:, 0] = (scaled_latent_coords[:, 0] + 1 - scale_factor_t).clamp(min=0)
535
+ scaled_latent_coords[:, 0] += frame_index
536
+
537
+ return scaled_latent_coords
538
+
539
+ @staticmethod
540
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._pack_latents
541
+ def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor:
542
+ # Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p].
543
+ # The patch dimensions are then permuted and collapsed into the channel dimension of shape:
544
+ # [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor).
545
+ # dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features
546
+ batch_size, num_channels, num_frames, height, width = latents.shape
547
+ post_patch_num_frames = num_frames // patch_size_t
548
+ post_patch_height = height // patch_size
549
+ post_patch_width = width // patch_size
550
+ latents = latents.reshape(
551
+ batch_size,
552
+ -1,
553
+ post_patch_num_frames,
554
+ patch_size_t,
555
+ post_patch_height,
556
+ patch_size,
557
+ post_patch_width,
558
+ patch_size,
559
+ )
560
+ latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3)
561
+ return latents
562
+
563
+ @staticmethod
564
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._unpack_latents
565
+ def _unpack_latents(
566
+ latents: torch.Tensor, num_frames: int, height: int, width: int, patch_size: int = 1, patch_size_t: int = 1
567
+ ) -> torch.Tensor:
568
+ # Packed latents of shape [B, S, D] (S is the effective video sequence length, D is the effective feature dimensions)
569
+ # are unpacked and reshaped into a video tensor of shape [B, C, F, H, W]. This is the inverse operation of
570
+ # what happens in the `_pack_latents` method.
571
+ batch_size = latents.size(0)
572
+ latents = latents.reshape(batch_size, num_frames, height, width, -1, patch_size_t, patch_size, patch_size)
573
+ latents = latents.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(2, 3)
574
+ return latents
575
+
576
+ @staticmethod
577
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._normalize_latents
578
+ def _normalize_latents(
579
+ latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
580
+ ) -> torch.Tensor:
581
+ # Normalize latents across the channel dimension [B, C, F, H, W]
582
+ latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
583
+ latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
584
+ latents = (latents - latents_mean) * scaling_factor / latents_std
585
+ return latents
586
+
587
+ @staticmethod
588
+ # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._denormalize_latents
589
+ def _denormalize_latents(
590
+ latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
591
+ ) -> torch.Tensor:
592
+ # Denormalize latents across the channel dimension [B, C, F, H, W]
593
+ latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
594
+ latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
595
+ latents = latents * latents_std / scaling_factor + latents_mean
596
+ return latents
597
+
598
+ def trim_conditioning_sequence(self, start_frame: int, sequence_num_frames: int, target_num_frames: int):
599
+ """
600
+ Trim a conditioning sequence to the allowed number of frames.
601
+
602
+ Args:
603
+ start_frame (int): The target frame number of the first frame in the sequence.
604
+ sequence_num_frames (int): The number of frames in the sequence.
605
+ target_num_frames (int): The target number of frames in the generated video.
606
+ Returns:
607
+ int: updated sequence length
608
+ """
609
+ scale_factor = self.vae_temporal_compression_ratio
610
+ num_frames = min(sequence_num_frames, target_num_frames - start_frame)
611
+ # Trim down to a multiple of temporal_scale_factor frames plus 1
612
+ num_frames = (num_frames - 1) // scale_factor * scale_factor + 1
613
+ return num_frames
614
+
615
+ @staticmethod
616
+ def add_noise_to_image_conditioning_latents(
617
+ t: float,
618
+ init_latents: torch.Tensor,
619
+ latents: torch.Tensor,
620
+ noise_scale: float,
621
+ conditioning_mask: torch.Tensor,
622
+ generator,
623
+ eps=1e-6,
624
+ ):
625
+ """
626
+ Add timestep-dependent noise to the hard-conditioning latents. This helps with motion continuity, especially
627
+ when conditioned on a single frame.
628
+ """
629
+ noise = randn_tensor(
630
+ latents.shape,
631
+ generator=generator,
632
+ device=latents.device,
633
+ dtype=latents.dtype,
634
+ )
635
+ # Add noise only to hard-conditioning latents (conditioning_mask = 1.0)
636
+ need_to_noise = (conditioning_mask > 1.0 - eps).unsqueeze(-1)
637
+ noised_latents = init_latents + noise_scale * noise * (t**2)
638
+ latents = torch.where(need_to_noise, noised_latents, latents)
639
+ return latents
640
+
641
+ def prepare_latents(
642
+ self,
643
+ conditions: Optional[List[torch.Tensor]] = None,
644
+ condition_strength: Optional[List[float]] = None,
645
+ condition_frame_index: Optional[List[int]] = None,
646
+ batch_size: int = 1,
647
+ num_channels_latents: int = 128,
648
+ height: int = 512,
649
+ width: int = 704,
650
+ num_frames: int = 161,
651
+ num_prefix_latent_frames: int = 2,
652
+ generator: Optional[torch.Generator] = None,
653
+ device: Optional[torch.device] = None,
654
+ dtype: Optional[torch.dtype] = None,
655
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
656
+ num_latent_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
657
+ latent_height = height // self.vae_spatial_compression_ratio
658
+ latent_width = width // self.vae_spatial_compression_ratio
659
+
660
+ shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
661
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
662
+
663
+ if len(conditions) > 0:
664
+ condition_latent_frames_mask = torch.zeros(
665
+ (batch_size, num_latent_frames), device=device, dtype=torch.float32
666
+ )
667
+
668
+ extra_conditioning_latents = []
669
+ extra_conditioning_video_ids = []
670
+ extra_conditioning_mask = []
671
+ extra_conditioning_num_latents = 0
672
+ for data, strength, frame_index in zip(conditions, condition_strength, condition_frame_index):
673
+ condition_latents = retrieve_latents(self.vae.encode(data), generator=generator)
674
+ condition_latents = self._normalize_latents(
675
+ condition_latents, self.vae.latents_mean, self.vae.latents_std
676
+ ).to(device, dtype=dtype)
677
+
678
+ num_data_frames = data.size(2)
679
+ num_cond_frames = condition_latents.size(2)
680
+
681
+ if frame_index == 0:
682
+ latents[:, :, :num_cond_frames] = torch.lerp(
683
+ latents[:, :, :num_cond_frames], condition_latents, strength
684
+ )
685
+ condition_latent_frames_mask[:, :num_cond_frames] = strength
686
+
687
+ else:
688
+ if num_data_frames > 1:
689
+ if num_cond_frames < num_prefix_latent_frames:
690
+ raise ValueError(
691
+ f"Number of latent frames must be at least {num_prefix_latent_frames} but got {num_data_frames}."
692
+ )
693
+
694
+ if num_cond_frames > num_prefix_latent_frames:
695
+ start_frame = frame_index // self.vae_temporal_compression_ratio + num_prefix_latent_frames
696
+ end_frame = start_frame + num_cond_frames - num_prefix_latent_frames
697
+ latents[:, :, start_frame:end_frame] = torch.lerp(
698
+ latents[:, :, start_frame:end_frame],
699
+ condition_latents[:, :, num_prefix_latent_frames:],
700
+ strength,
701
+ )
702
+ condition_latent_frames_mask[:, start_frame:end_frame] = strength
703
+ condition_latents = condition_latents[:, :, :num_prefix_latent_frames]
704
+
705
+ noise = randn_tensor(condition_latents.shape, generator=generator, device=device, dtype=dtype)
706
+ condition_latents = torch.lerp(noise, condition_latents, strength)
707
+
708
+ condition_video_ids = self._prepare_video_ids(
709
+ batch_size,
710
+ condition_latents.size(2),
711
+ latent_height,
712
+ latent_width,
713
+ patch_size=self.transformer_spatial_patch_size,
714
+ patch_size_t=self.transformer_temporal_patch_size,
715
+ device=device,
716
+ )
717
+ condition_video_ids = self._scale_video_ids(
718
+ condition_video_ids,
719
+ scale_factor=self.vae_spatial_compression_ratio,
720
+ scale_factor_t=self.vae_temporal_compression_ratio,
721
+ frame_index=frame_index,
722
+ device=device,
723
+ )
724
+ condition_latents = self._pack_latents(
725
+ condition_latents,
726
+ self.transformer_spatial_patch_size,
727
+ self.transformer_temporal_patch_size,
728
+ )
729
+ condition_conditioning_mask = torch.full(
730
+ condition_latents.shape[:2], strength, device=device, dtype=dtype
731
+ )
732
+
733
+ extra_conditioning_latents.append(condition_latents)
734
+ extra_conditioning_video_ids.append(condition_video_ids)
735
+ extra_conditioning_mask.append(condition_conditioning_mask)
736
+ extra_conditioning_num_latents += condition_latents.size(1)
737
+
738
+ video_ids = self._prepare_video_ids(
739
+ batch_size,
740
+ num_latent_frames,
741
+ latent_height,
742
+ latent_width,
743
+ patch_size_t=self.transformer_temporal_patch_size,
744
+ patch_size=self.transformer_spatial_patch_size,
745
+ device=device,
746
+ )
747
+ if len(conditions) > 0:
748
+ conditioning_mask = condition_latent_frames_mask.gather(1, video_ids[:, 0])
749
+ else:
750
+ conditioning_mask, extra_conditioning_num_latents = None, 0
751
+ video_ids = self._scale_video_ids(
752
+ video_ids,
753
+ scale_factor=self.vae_spatial_compression_ratio,
754
+ scale_factor_t=self.vae_temporal_compression_ratio,
755
+ frame_index=0,
756
+ device=device,
757
+ )
758
+ latents = self._pack_latents(
759
+ latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
760
+ )
761
+
762
+ if len(conditions) > 0 and len(extra_conditioning_latents) > 0:
763
+ latents = torch.cat([*extra_conditioning_latents, latents], dim=1)
764
+ video_ids = torch.cat([*extra_conditioning_video_ids, video_ids], dim=2)
765
+ conditioning_mask = torch.cat([*extra_conditioning_mask, conditioning_mask], dim=1)
766
+
767
+ return latents, conditioning_mask, video_ids, extra_conditioning_num_latents
768
+
769
+ @property
770
+ def guidance_scale(self):
771
+ return self._guidance_scale
772
+
773
+ @property
774
+ def do_classifier_free_guidance(self):
775
+ return self._guidance_scale > 1.0
776
+
777
+ @property
778
+ def num_timesteps(self):
779
+ return self._num_timesteps
780
+
781
+ @property
782
+ def current_timestep(self):
783
+ return self._current_timestep
784
+
785
+ @property
786
+ def attention_kwargs(self):
787
+ return self._attention_kwargs
788
+
789
+ @property
790
+ def interrupt(self):
791
+ return self._interrupt
792
+
793
+ @torch.no_grad()
794
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
795
+ def __call__(
796
+ self,
797
+ conditions: Union[LTXVideoCondition, List[LTXVideoCondition]] = None,
798
+ image: Union[PipelineImageInput, List[PipelineImageInput]] = None,
799
+ video: List[PipelineImageInput] = None,
800
+ frame_index: Union[int, List[int]] = 0,
801
+ strength: Union[float, List[float]] = 1.0,
802
+ prompt: Union[str, List[str]] = None,
803
+ negative_prompt: Optional[Union[str, List[str]]] = None,
804
+ height: int = 512,
805
+ width: int = 704,
806
+ num_frames: int = 161,
807
+ frame_rate: int = 25,
808
+ num_inference_steps: int = 50,
809
+ timesteps: List[int] = None,
810
+ guidance_scale: float = 3,
811
+ image_cond_noise_scale: float = 0.15,
812
+ num_videos_per_prompt: Optional[int] = 1,
813
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
814
+ latents: Optional[torch.Tensor] = None,
815
+ prompt_embeds: Optional[torch.Tensor] = None,
816
+ prompt_attention_mask: Optional[torch.Tensor] = None,
817
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
818
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
819
+ decode_timestep: Union[float, List[float]] = 0.0,
820
+ decode_noise_scale: Optional[Union[float, List[float]]] = None,
821
+ output_type: Optional[str] = "pil",
822
+ return_dict: bool = True,
823
+ attention_kwargs: Optional[Dict[str, Any]] = None,
824
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
825
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
826
+ max_sequence_length: int = 256,
827
+ ):
828
+ r"""
829
+ Function invoked when calling the pipeline for generation.
830
+
831
+ Args:
832
+ conditions (`List[LTXVideoCondition], *optional*`):
833
+ The list of frame-conditioning items for the video generation.If not provided, conditions will be
834
+ created using `image`, `video`, `frame_index` and `strength`.
835
+ image (`PipelineImageInput` or `List[PipelineImageInput]`, *optional*):
836
+ The image or images to condition the video generation. If not provided, one has to pass `video` or
837
+ `conditions`.
838
+ video (`List[PipelineImageInput]`, *optional*):
839
+ The video to condition the video generation. If not provided, one has to pass `image` or `conditions`.
840
+ frame_index (`int` or `List[int]`, *optional*):
841
+ The frame index or frame indices at which the image or video will conditionally effect the video
842
+ generation. If not provided, one has to pass `conditions`.
843
+ strength (`float` or `List[float]`, *optional*):
844
+ The strength or strengths of the conditioning effect. If not provided, one has to pass `conditions`.
845
+ prompt (`str` or `List[str]`, *optional*):
846
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
847
+ instead.
848
+ height (`int`, defaults to `512`):
849
+ The height in pixels of the generated image. This is set to 480 by default for the best results.
850
+ width (`int`, defaults to `704`):
851
+ The width in pixels of the generated image. This is set to 848 by default for the best results.
852
+ num_frames (`int`, defaults to `161`):
853
+ The number of video frames to generate
854
+ num_inference_steps (`int`, *optional*, defaults to 50):
855
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
856
+ expense of slower inference.
857
+ timesteps (`List[int]`, *optional*):
858
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
859
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
860
+ passed will be used. Must be in descending order.
861
+ guidance_scale (`float`, defaults to `3 `):
862
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
863
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
864
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
865
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
866
+ usually at the expense of lower image quality.
867
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
868
+ The number of videos to generate per prompt.
869
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
870
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
871
+ to make generation deterministic.
872
+ latents (`torch.Tensor`, *optional*):
873
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
874
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
875
+ tensor will ge generated by sampling using the supplied random `generator`.
876
+ prompt_embeds (`torch.Tensor`, *optional*):
877
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
878
+ provided, text embeddings will be generated from `prompt` input argument.
879
+ prompt_attention_mask (`torch.Tensor`, *optional*):
880
+ Pre-generated attention mask for text embeddings.
881
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
882
+ Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
883
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
884
+ negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
885
+ Pre-generated attention mask for negative text embeddings.
886
+ decode_timestep (`float`, defaults to `0.0`):
887
+ The timestep at which generated video is decoded.
888
+ decode_noise_scale (`float`, defaults to `None`):
889
+ The interpolation factor between random noise and denoised latents at the decode timestep.
890
+ output_type (`str`, *optional*, defaults to `"pil"`):
891
+ The output format of the generate image. Choose between
892
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
893
+ return_dict (`bool`, *optional*, defaults to `True`):
894
+ Whether or not to return a [`~pipelines.ltx.LTXPipelineOutput`] instead of a plain tuple.
895
+ attention_kwargs (`dict`, *optional*):
896
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
897
+ `self.processor` in
898
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
899
+ callback_on_step_end (`Callable`, *optional*):
900
+ A function that calls at the end of each denoising steps during the inference. The function is called
901
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
902
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
903
+ `callback_on_step_end_tensor_inputs`.
904
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
905
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
906
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
907
+ `._callback_tensor_inputs` attribute of your pipeline class.
908
+ max_sequence_length (`int` defaults to `128 `):
909
+ Maximum sequence length to use with the `prompt`.
910
+
911
+ Examples:
912
+
913
+ Returns:
914
+ [`~pipelines.ltx.LTXPipelineOutput`] or `tuple`:
915
+ If `return_dict` is `True`, [`~pipelines.ltx.LTXPipelineOutput`] is returned, otherwise a `tuple` is
916
+ returned where the first element is a list with the generated images.
917
+ """
918
+
919
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
920
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
921
+ if latents is not None:
922
+ raise ValueError("Passing latents is not yet supported.")
923
+
924
+ # 1. Check inputs. Raise error if not correct
925
+ self.check_inputs(
926
+ prompt=prompt,
927
+ conditions=conditions,
928
+ image=image,
929
+ video=video,
930
+ frame_index=frame_index,
931
+ strength=strength,
932
+ height=height,
933
+ width=width,
934
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
935
+ prompt_embeds=prompt_embeds,
936
+ negative_prompt_embeds=negative_prompt_embeds,
937
+ prompt_attention_mask=prompt_attention_mask,
938
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
939
+ )
940
+
941
+ self._guidance_scale = guidance_scale
942
+ self._attention_kwargs = attention_kwargs
943
+ self._interrupt = False
944
+ self._current_timestep = None
945
+
946
+ # 2. Define call parameters
947
+ if prompt is not None and isinstance(prompt, str):
948
+ batch_size = 1
949
+ elif prompt is not None and isinstance(prompt, list):
950
+ batch_size = len(prompt)
951
+ else:
952
+ batch_size = prompt_embeds.shape[0]
953
+
954
+ if conditions is not None:
955
+ if not isinstance(conditions, list):
956
+ conditions = [conditions]
957
+
958
+ strength = [condition.strength for condition in conditions]
959
+ frame_index = [condition.frame_index for condition in conditions]
960
+ image = [condition.image for condition in conditions]
961
+ video = [condition.video for condition in conditions]
962
+ elif image is not None or video is not None:
963
+ if not isinstance(image, list):
964
+ image = [image]
965
+ num_conditions = 1
966
+ elif isinstance(image, list):
967
+ num_conditions = len(image)
968
+ if not isinstance(video, list):
969
+ video = [video]
970
+ num_conditions = 1
971
+ elif isinstance(video, list):
972
+ num_conditions = len(video)
973
+
974
+ if not isinstance(frame_index, list):
975
+ frame_index = [frame_index] * num_conditions
976
+ if not isinstance(strength, list):
977
+ strength = [strength] * num_conditions
978
+
979
+ device = self._execution_device
980
+
981
+ # 3. Prepare text embeddings
982
+ (
983
+ prompt_embeds,
984
+ prompt_attention_mask,
985
+ negative_prompt_embeds,
986
+ negative_prompt_attention_mask,
987
+ ) = self.encode_prompt(
988
+ prompt=prompt,
989
+ negative_prompt=negative_prompt,
990
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
991
+ num_videos_per_prompt=num_videos_per_prompt,
992
+ prompt_embeds=prompt_embeds,
993
+ negative_prompt_embeds=negative_prompt_embeds,
994
+ prompt_attention_mask=prompt_attention_mask,
995
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
996
+ max_sequence_length=max_sequence_length,
997
+ device=device,
998
+ )
999
+ if self.do_classifier_free_guidance:
1000
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1001
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
1002
+
1003
+ vae_dtype = self.vae.dtype
1004
+
1005
+ conditioning_tensors = []
1006
+ is_conditioning_image_or_video = image is not None or video is not None
1007
+ if is_conditioning_image_or_video:
1008
+ for condition_image, condition_video, condition_frame_index, condition_strength in zip(
1009
+ image, video, frame_index, strength
1010
+ ):
1011
+ if condition_image is not None:
1012
+ condition_tensor = (
1013
+ self.video_processor.preprocess(condition_image, height, width)
1014
+ .unsqueeze(2)
1015
+ .to(device, dtype=vae_dtype)
1016
+ )
1017
+ elif condition_video is not None:
1018
+ condition_tensor = self.video_processor.preprocess_video(condition_video, height, width)
1019
+ num_frames_input = condition_tensor.size(2)
1020
+ num_frames_output = self.trim_conditioning_sequence(
1021
+ condition_frame_index, num_frames_input, num_frames
1022
+ )
1023
+ condition_tensor = condition_tensor[:, :, :num_frames_output]
1024
+ condition_tensor = condition_tensor.to(device, dtype=vae_dtype)
1025
+ else:
1026
+ raise ValueError("Either `image` or `video` must be provided for conditioning.")
1027
+
1028
+ if condition_tensor.size(2) % self.vae_temporal_compression_ratio != 1:
1029
+ raise ValueError(
1030
+ f"Number of frames in the video must be of the form (k * {self.vae_temporal_compression_ratio} + 1) "
1031
+ f"but got {condition_tensor.size(2)} frames."
1032
+ )
1033
+ conditioning_tensors.append(condition_tensor)
1034
+
1035
+ # 4. Prepare latent variables
1036
+ num_channels_latents = self.transformer.config.in_channels
1037
+ latents, conditioning_mask, video_coords, extra_conditioning_num_latents = self.prepare_latents(
1038
+ conditioning_tensors,
1039
+ strength,
1040
+ frame_index,
1041
+ batch_size=batch_size * num_videos_per_prompt,
1042
+ num_channels_latents=num_channels_latents,
1043
+ height=height,
1044
+ width=width,
1045
+ num_frames=num_frames,
1046
+ generator=generator,
1047
+ device=device,
1048
+ dtype=torch.float32,
1049
+ )
1050
+
1051
+ video_coords = video_coords.float()
1052
+ video_coords[:, 0] = video_coords[:, 0] * (1.0 / frame_rate)
1053
+
1054
+ init_latents = latents.clone() if is_conditioning_image_or_video else None
1055
+
1056
+ if self.do_classifier_free_guidance:
1057
+ video_coords = torch.cat([video_coords, video_coords], dim=0)
1058
+
1059
+ # 5. Prepare timesteps
1060
+ latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
1061
+ latent_height = height // self.vae_spatial_compression_ratio
1062
+ latent_width = width // self.vae_spatial_compression_ratio
1063
+ sigmas = linear_quadratic_schedule(num_inference_steps)
1064
+ timesteps = sigmas * 1000
1065
+ timesteps, num_inference_steps = retrieve_timesteps(
1066
+ self.scheduler,
1067
+ num_inference_steps,
1068
+ device,
1069
+ timesteps=timesteps,
1070
+ )
1071
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1072
+ self._num_timesteps = len(timesteps)
1073
+
1074
+ # 6. Denoising loop
1075
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1076
+ for i, t in enumerate(timesteps):
1077
+ if self.interrupt:
1078
+ continue
1079
+
1080
+ self._current_timestep = t
1081
+
1082
+ if image_cond_noise_scale > 0 and init_latents is not None:
1083
+ # Add timestep-dependent noise to the hard-conditioning latents
1084
+ # This helps with motion continuity, especially when conditioned on a single frame
1085
+ latents = self.add_noise_to_image_conditioning_latents(
1086
+ t / 1000.0,
1087
+ init_latents,
1088
+ latents,
1089
+ image_cond_noise_scale,
1090
+ conditioning_mask,
1091
+ generator,
1092
+ )
1093
+
1094
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1095
+ if is_conditioning_image_or_video:
1096
+ conditioning_mask_model_input = (
1097
+ torch.cat([conditioning_mask, conditioning_mask])
1098
+ if self.do_classifier_free_guidance
1099
+ else conditioning_mask
1100
+ )
1101
+ latent_model_input = latent_model_input.to(prompt_embeds.dtype)
1102
+
1103
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1104
+ timestep = t.expand(latent_model_input.shape[0]).unsqueeze(-1).float()
1105
+ if is_conditioning_image_or_video:
1106
+ timestep = torch.min(timestep, (1 - conditioning_mask_model_input) * 1000.0)
1107
+
1108
+ noise_pred = self.transformer(
1109
+ hidden_states=latent_model_input,
1110
+ encoder_hidden_states=prompt_embeds,
1111
+ timestep=timestep,
1112
+ encoder_attention_mask=prompt_attention_mask,
1113
+ video_coords=video_coords,
1114
+ attention_kwargs=attention_kwargs,
1115
+ return_dict=False,
1116
+ )[0]
1117
+
1118
+ if self.do_classifier_free_guidance:
1119
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1120
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1121
+ timestep, _ = timestep.chunk(2)
1122
+
1123
+ denoised_latents = self.scheduler.step(
1124
+ -noise_pred, t, latents, per_token_timesteps=timestep, return_dict=False
1125
+ )[0]
1126
+ if is_conditioning_image_or_video:
1127
+ tokens_to_denoise_mask = (t / 1000 - 1e-6 < (1.0 - conditioning_mask)).unsqueeze(-1)
1128
+ latents = torch.where(tokens_to_denoise_mask, denoised_latents, latents)
1129
+ else:
1130
+ latents = denoised_latents
1131
+
1132
+ if callback_on_step_end is not None:
1133
+ callback_kwargs = {}
1134
+ for k in callback_on_step_end_tensor_inputs:
1135
+ callback_kwargs[k] = locals()[k]
1136
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1137
+
1138
+ latents = callback_outputs.pop("latents", latents)
1139
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1140
+
1141
+ # call the callback, if provided
1142
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1143
+ progress_bar.update()
1144
+
1145
+ if XLA_AVAILABLE:
1146
+ xm.mark_step()
1147
+
1148
+ if is_conditioning_image_or_video:
1149
+ latents = latents[:, extra_conditioning_num_latents:]
1150
+
1151
+ latents = self._unpack_latents(
1152
+ latents,
1153
+ latent_num_frames,
1154
+ latent_height,
1155
+ latent_width,
1156
+ self.transformer_spatial_patch_size,
1157
+ self.transformer_temporal_patch_size,
1158
+ )
1159
+
1160
+ if output_type == "latent":
1161
+ video = latents
1162
+ else:
1163
+ latents = self._denormalize_latents(
1164
+ latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor
1165
+ )
1166
+ latents = latents.to(prompt_embeds.dtype)
1167
+
1168
+ if not self.vae.config.timestep_conditioning:
1169
+ timestep = None
1170
+ else:
1171
+ noise = torch.randn(latents.shape, generator=generator, device=device, dtype=latents.dtype)
1172
+ if not isinstance(decode_timestep, list):
1173
+ decode_timestep = [decode_timestep] * batch_size
1174
+ if decode_noise_scale is None:
1175
+ decode_noise_scale = decode_timestep
1176
+ elif not isinstance(decode_noise_scale, list):
1177
+ decode_noise_scale = [decode_noise_scale] * batch_size
1178
+
1179
+ timestep = torch.tensor(decode_timestep, device=device, dtype=latents.dtype)
1180
+ decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=latents.dtype)[
1181
+ :, None, None, None, None
1182
+ ]
1183
+ latents = (1 - decode_noise_scale) * latents + decode_noise_scale * noise
1184
+
1185
+ video = self.vae.decode(latents, timestep, return_dict=False)[0]
1186
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
1187
+
1188
+ # Offload all models
1189
+ self.maybe_free_model_hooks()
1190
+
1191
+ if not return_dict:
1192
+ return (video,)
1193
+
1194
+ return LTXPipelineOutput(frames=video)