File size: 19,931 Bytes
156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 6ee0de3 e1f2481 6ee0de3 e1f2481 156ecbd e1f2481 6ee0de3 e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd e1f2481 156ecbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
import time # to simulate a real time data, time loop
from os import listdir
from os.path import isfile, join
import numpy as np # np mean, np random
import pandas as pd # read csv, df manipulation
from collections import Counter
import plotly.express as px # interactive charts
from plotly import graph_objs as go
import streamlit as st # π data web app development
import plotly.figure_factory as ff
import numpy as np
from collections import Counter
from streamlit_echarts import st_echarts
print("Make sure to activate your VPN before running this script")
st.set_page_config(
page_title="ML Agility tracker",
page_icon="β‘",
layout="wide",
)
# Session State variables:
state = st.session_state
if "INFO_CLOSED" not in state:
state.INFO_CLOSED = False
# dashboard title
st.title("ML Agility Tracker β‘")
# Custom chart colors (https://plotly.com/python/discrete-color/)
colorway = [
"#5470c6",
"#FF7F0E",
"#94cc74",
"#92cb75",
"#fac858",
"#ee6666",
"#73c0de",
"#3ba272",
]
# colorway = ["#3366cc", "#FF7F0E"]
st.markdown(
"Machine Learning Agility (MLAgility) measures vendor progress towards providing this turnkey solution to their customers. For more details, please visit [mlagility.org](mlagility.org).",
unsafe_allow_html=True,
)
def add_filter(
data_frame_list, name, label, options=None, num_cols=1, last_is_others=True
):
# Get list of all options and return if no options are available
all_options = set(data_frame_list[-1][label])
if "-" in all_options:
all_options.remove("-")
if len(all_options) == 0:
return data_frame_list
st.markdown(f"#### {name}")
# Create list of options if selectable options are not provided
if options is None:
options_dict = Counter(data_frame_list[-1][label])
sorted_options = sorted(options_dict, key=options_dict.get, reverse=True)
if "-" in sorted_options:
sorted_options.remove("-")
if len(sorted_options) > 8:
options = list(sorted_options[:7]) + ["others"]
last_is_others = True
else:
options = list(sorted_options)
last_is_others = False
cols = st.columns(num_cols)
instantiated_checkbox = []
for idx in range(len(options)):
with cols[idx % num_cols]:
instantiated_checkbox.append(
st.checkbox(options[idx], False, key=f"{label}_{options[idx]}")
)
selected_options = [
options[idx] for idx, checked in enumerate(instantiated_checkbox) if checked
]
# The last checkbox will always correspond to "other"
if instantiated_checkbox[-1] and last_is_others:
selected_options = selected_options[:-1]
other_options = [x for x in all_options if x not in options]
selected_options = set(selected_options + other_options)
if len(selected_options) > 0:
for idx in range(len(data_frame_list)):
data_frame_list[idx] = data_frame_list[idx][
[
any([x == model_entry for x in selected_options])
for model_entry in data_frame_list[idx][label]
]
]
return data_frame_list
def parameter_filter(data_frame_list):
st.markdown(f"#### Parameters")
start_params, end_params = st.select_slider(
"Select a range parameters (in millions)",
options=[str(x) for x in np.arange(0, 1001, 10, dtype=int)],
value=("0", "1000"),
)
for idx in range(len(data_frame_list)):
data_frame_list[idx] = data_frame_list[idx][
[
int(model_entry) >= int(start_params) * 1000000
and int(model_entry) <= int(end_params) * 1000000
for model_entry in data_frame_list[idx]["params"]
]
]
return data_frame_list
with st.sidebar:
st.markdown("# Filters")
selected_test_type = "mlagility"
report_folder = "reports/mlagility"
# Get ML Agility reports
reports = sorted(
[f for f in listdir(report_folder) if isfile(join(report_folder, f))]
)
selected_report = st.selectbox("Test date", reports, index=len(reports) - 1)
selected_report_idx = reports.index(selected_report)
prev_report = reports[max(0, selected_report_idx - 1)]
mla_report = pd.read_csv(f"{report_folder}/{selected_report}")
prev_mla_report = pd.read_csv(f"{report_folder}/{prev_report}")
# Convert int parameters to int/float
for p in ["chips_used", "cycles", "params"]:
mla_report[p] = mla_report[p].replace("-", 0).astype("int64")
prev_mla_report[p] = prev_mla_report[p].replace("-", 0).astype("int64")
# Parameter filter
mla_report, prev_mla_report = parameter_filter([mla_report, prev_mla_report])
# Add author filter
authors = (
[
"google",
"apple",
"facebook",
"openai",
"microsoft",
"huggingface",
"CompVis",
"others",
]
if selected_test_type == "monthly"
else None
)
mla_report, prev_mla_report = add_filter(
[mla_report, prev_mla_report],
"Authors",
label="author",
options=authors,
num_cols=2,
)
# Add task filter
tasks = [
"Image Classification",
"Translation",
"Image Segmentation",
"Fill-Mask",
"Text-to-Image",
"Token Classification",
"Sentence Similarity",
"Audio Classification",
"Question Answering",
"Summarization",
"other",
]
tasks = None
mla_report, prev_mla_report = add_filter(
[mla_report, prev_mla_report], "Tasks", label="task", options=tasks
)
def detailed_progress_list(df_new, df_old, filter=None):
return
"""
if filter is not None:
df_new = df_new[(df_new[filter] == True)]
df_old = df_old[(df_old[filter] == True)]
progress = df_new[~(df_new["hash"].isin(df_old["hash"]))].reset_index(drop=True)
regression = df_old[~(df_old["hash"].isin(df_new["hash"]))].reset_index(drop=True)
for model_name in progress["model_name"]:
st.markdown(
f'<span style="color:green">β {model_name}</span>',
unsafe_allow_html=True,
)
for model_name in regression["model_name"]:
st.markdown(
f'<span style="color:red">β {model_name}</span>',
unsafe_allow_html=True,
)
"""
# creating a single-element container
placeholder = st.empty()
with placeholder.container():
st.markdown("## Summary Results")
all_models = len(mla_report)
base_onnx = np.sum(mla_report["base_onnx"])
optimized_onnx = np.sum(mla_report["optimized_onnx"])
all_ops_supported = np.sum(mla_report["all_ops_supported"])
fp16_onnx = np.sum(mla_report["fp16_onnx"])
compiles = np.sum(mla_report["compiles"])
assembles = np.sum(mla_report["assembles"])
# Pie chart for showing origin of models
# based on https://echarts.apache.org/examples/en/editor.html?c=pie-simple
all_authors = list(mla_report.loc[:, "author"])
try:
all_sources = list(mla_report.loc[:, "model_type"])
except KeyError:
all_sources = []
all_sources = []
author_count = {i: all_authors.count(i) for i in all_authors}
sources_count = {i: all_sources.count(i) for i in all_sources}
cols = st.columns(2)
with cols[0]:
st.markdown("""#### Workload origin""")
options = {
"darkMode": "true",
"textStyle": {"fontSize": 16},
"tooltip": {"trigger": "item"},
"series": [
{
"name": "Access From",
"type": "pie",
"radius": [0, "30%"],
"label": {"position": "inner", "fontSize": 14},
"labelLine": {"show": "false"},
"data": [
{"value": sources_count[k], "name": k}
for k in sources_count.keys()
],
},
{
"name": "Name of corpus:",
"type": "pie",
"radius": ["70%", "70%"],
"data": [
{"value": author_count[k], "name": k}
for k in author_count.keys()
],
"label": {
"formatter": "{b}\n{d}%",
},
},
{
"name": "Name of corpus:",
"type": "pie",
"radius": ["50%", "70%"],
"data": [
{"value": author_count[k], "name": k}
for k in author_count.keys()
],
"emphasis": {
"itemStyle": {
"shadowBlur": 10,
"shadowOffsetX": 0,
"shadowColor": "rgba(0, 0, 0, 0.5)",
}
},
"label": {
"position": "inner",
"formatter": "{c}",
"color": "black",
"textBorderWidth": 0,
},
},
{
# Show total number of models inside
"name": "Total number of models:",
"type": "pie",
"radius": ["0%", "0%"],
"data": [{"value": all_models, "name": "Total"}],
"silent": "true",
"label": {
"position": "inner",
"formatter": "{c}",
"color": "white",
"fontSize": 30,
"textBorderWidth": 0,
},
},
],
}
st_echarts(
options=options,
height="400px",
)
with cols[1]:
# Add parameters histogram
all_models = [float(x) / 1000000 for x in mla_report["params"] if x != "-"]
hist_data = []
group_labels = []
if all_models != []:
hist_data.append(all_models)
group_labels.append("All models")
st.markdown("""#### Parameter Size Distribution""")
if hist_data != []:
fig = ff.create_distplot(
hist_data,
group_labels,
bin_size=25,
histnorm="",
colors=colorway,
curve_type="normal",
)
fig.layout.update(xaxis_title="Parameters in millions")
fig.layout.update(yaxis_title="count")
fig.update_xaxes(range=[1, 1000])
st.plotly_chart(fig, use_container_width=True)
else:
st.markdown(
"""At least one model needs to reach the compiler to show this graph π
"""
)
if "tsp_gpu_compute_ratio" in mla_report and "tsp_gpu_e2e_ratio" in mla_report:
cols = st.columns(2)
with cols[0]:
# GPU Acceleration plot
st.markdown("""#### Benchmark results (latency)""")
# Prepare data
df = mla_report[
[
"model_name",
"tsp_estimated_e2e_latency",
"gpu_e2e_latency",
]
]
df = df.sort_values(by=["model_name"])
df = df[(df.tsp_estimated_e2e_latency != "-")]
df = df[(df.gpu_e2e_latency != "-")]
df["tsp_estimated_e2e_latency"] = df["tsp_estimated_e2e_latency"].astype(
float
)
df["gpu_e2e_latency"] = df["gpu_e2e_latency"].astype(float)
if len(df) == 0 and assembles > 0:
st.markdown(
(
"We do not have GPU numbers for the model(s) mapped to the GroqChip."
" This is potentially due to lack of out-of-the-box TensorRT support."
)
)
elif assembles == 0:
st.markdown(
"Nothing to show here since no models have been successfully assembled."
)
else:
# Coming up with artificial data for now
df["cpu_latency"] = (
df["tsp_estimated_e2e_latency"] + df["gpu_e2e_latency"]
) * 10
df["tsp_cpu_compute_ratio"] = (
df["cpu_latency"] / df["tsp_estimated_e2e_latency"]
)
df["gpu_cpu_compute_ratio"] = df["cpu_latency"] / df["gpu_e2e_latency"]
data = [
go.Bar(
x=df["model_name"],
y=df["gpu_cpu_compute_ratio"],
name="NVIDIA A100",
),
go.Bar(
x=df["model_name"],
y=df["tsp_cpu_compute_ratio"],
name="GroqChip 1",
),
go.Bar(
x=df["model_name"],
y=df["cpu_latency"] * 0 + 1,
name="Intel(R) Xeon(R)",
),
]
layout = go.Layout(
barmode="overlay", # group
legend={
"orientation": "h",
"xanchor": "center",
"x": 0.5,
"y": 1.2,
},
yaxis_title="Latency Speedup",
colorway=[colorway[2], colorway[1], colorway[0]],
height=500,
)
fig = dict(data=data, layout=layout)
st.plotly_chart(fig, use_container_width=True)
st.markdown(
"<sup>*</sup>Estimated I/O does NOT include delays caused by Groq's runtime.",
unsafe_allow_html=True,
)
st.markdown(
"<sup>β </sup>Baseline corresponds to Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz.",
unsafe_allow_html=True,
)
with cols[1]:
# Show stats
st.markdown(
f"""<br><br><br><br>
<p style="font-family:sans-serif; font-size: 20px;text-align: center;">Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz Acceleration:</p>
<p style="font-family:sans-serif; color:{colorway[0]}; font-size: 26px;text-align: center;"> {1}x (Baseline)</p>
<br><br>
<p style="font-family:sans-serif; font-size: 20px;text-align: center;">NVIDIA A100-PCIE-40GB Acceleration:</p>
<p style="font-family:sans-serif; color:{colorway[2]}; font-size: 26px;text-align: center;"> {round(df["gpu_cpu_compute_ratio"].mean(),2)}x</p>
<p style="font-family:sans-serif; color:{colorway[2]}; font-size: 20px;text-align: center;"> min {round(df["gpu_cpu_compute_ratio"].min(),2)}x; max {round(df["gpu_cpu_compute_ratio"].max(),2)}x</p>
<br><br>
<p style="font-family:sans-serif; font-size: 20px;text-align: center;">GroqChip 1 Acceleration<sup>*</sup>:</p>
<p style="font-family:sans-serif; color:{colorway[1]}; font-size: 26px;text-align: center;"> {round(df["tsp_cpu_compute_ratio"].mean(),2)}x</p>
<p style="font-family:sans-serif; color:{colorway[1]}; font-size: 20px;text-align: center;"> min {round(df["tsp_cpu_compute_ratio"].min(),2)}x; max {round(df["tsp_cpu_compute_ratio"].max(),2)}x</p>""",
unsafe_allow_html=True,
)
# FAQ Block
cols = st.columns(2)
with cols[0]:
st.markdown(
"""<style>
.big-font {
font-size:20px !important;
}
</style>
""",
unsafe_allow_html=True,
)
class Collapsable:
def __init__(self, preamble="", epilogue=""):
self.preamble = preamble
self.epilogue = epilogue
self.sections = []
def add_section(self, heading, text):
self.sections.append((heading, text))
def deploy(self):
small_font = 18
large_font = 18
secs = "".join(
[
(
f"<details><summary style='font-size:{large_font}px;'>{heading}</summary>"
f"<blockquote><details><summary style='font-size:{small_font}px;max-width: 80%;'>{text}</summary>"
f"<blockquote></blockquote></details></blockquote></details>"
)
for heading, text in self.sections
]
)
collapsable_sec = f"""
<ol>
{self.preamble}
{secs}
{self.epilogue}
</ol>
"""
st.markdown(collapsable_sec, unsafe_allow_html=True)
st.markdown("""## About this workload analysis (FAQ)""")
faq = Collapsable()
faq.add_section(
"Model selection",
'The models that are part of the "ML Agility" set are models that have been internally selected and represent a mix between popular open-source models and models that Groq has historically focused some efforts on (like GNNs).',
)
faq.add_section(
"Experimental Setup",
"-",
)
faq.add_section(
"Key limitations",
"This set of workloads does not include models with more than 1B parametes.",
)
faq.deploy()
st.markdown(
"For more details, please visit [mlagility.org](mlagility.org).",
unsafe_allow_html=True,
)
st.markdown("## Detailed Data View")
model_name = st.text_input("", placeholder="Filter model by name")
if model_name != "":
mla_report = mla_report[[model_name in x for x in mla_report["model_name"]]]
# Add columns that do not exist yet
mla_report["chips_used_gpu"] = 1
mla_report["cpu_latency"] = 0
mla_report["chips_used_cpu"] = 0
# Using 2 significant digits
mla_report["tsp_estimated_e2e_latency"] = [
"-" if x == "-" else "{:.3f}".format(float(x))
for x in mla_report["tsp_estimated_e2e_latency"]
]
mla_report["gpu_e2e_latency"] = [
"-" if x == "-" else "{:.3f}".format(float(x))
for x in mla_report["gpu_e2e_latency"]
]
renamed_cols = {
"model_name": "Model Name",
"author": "Source",
"params": "Parameters",
"model_type": "Framework",
"tsp_estimated_e2e_latency": "GroqChip 1: Latency (ms)",
"gpu_e2e_latency": "NVIDIA A100-PCIE-40GB: Latency (ms)",
"cpu_latency": "Intel(R) Xeon(R) Gold 6338 CPU: Latency (ms)",
"chips_used": "GroqChip 1: Chips Used",
"chips_used_gpu": "NVIDIA A100-PCIE-40GB: Chips Used",
"chips_used_cpu": "Intel(R) Xeon(R) Gold 6338 CPU: Chips Used",
}
mla_report.rename(columns=renamed_cols, inplace=True)
selected_cols = renamed_cols.values()
st.dataframe(
mla_report[selected_cols],
height=min((len(mla_report) + 1) * 35, 35 * 21),
use_container_width=True,
)
|