Spaces:
Paused
Paused
File size: 1,306 Bytes
4cb813d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
import torch
# Load Model & Tokenizer
model_name = "AventIQ-AI/distilbert-spam-detection"
tokenizer = DistilBertTokenizer.from_pretrained(model_name)
model = DistilBertForSequenceClassification.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def predict_spam(text):
model.eval()
inputs = tokenizer(text, return_tensors="pt", padding="max_length", truncation=True, max_length=128).to(device)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=-1)
pred_class = torch.argmax(probs).item()
return "π¨ Spam" if pred_class == 1 else "β
Not Spam"
# Create Gradio Interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π AI-Powered Spam Detector")
gr.Markdown("Enter a message below to check if it's spam or not!")
with gr.Row():
input_box = gr.Textbox(placeholder="Type a message here...", lines=2)
output_label = gr.Label()
button = gr.Button("π Analyze")
button.click(predict_spam, inputs=input_box, outputs=output_label)
# Launch
if __name__ == "__main__":
demo.launch() |