File size: 1,306 Bytes
4cb813d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import gradio as gr
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
import torch

# Load Model & Tokenizer
model_name = "AventIQ-AI/distilbert-spam-detection"
tokenizer = DistilBertTokenizer.from_pretrained(model_name)
model = DistilBertForSequenceClassification.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def predict_spam(text):
    model.eval()
    inputs = tokenizer(text, return_tensors="pt", padding="max_length", truncation=True, max_length=128).to(device)
    
    with torch.no_grad():
        outputs = model(**inputs)
        probs = torch.softmax(outputs.logits, dim=-1)
        pred_class = torch.argmax(probs).item()
    
    return "🚨 Spam" if pred_class == 1 else "βœ… Not Spam"

# Create Gradio Interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸš€ AI-Powered Spam Detector")
    gr.Markdown("Enter a message below to check if it's spam or not!")
    
    with gr.Row():
        input_box = gr.Textbox(placeholder="Type a message here...", lines=2)
        output_label = gr.Label()
    
    button = gr.Button("πŸ” Analyze")
    button.click(predict_spam, inputs=input_box, outputs=output_label)

# Launch
if __name__ == "__main__":
    demo.launch()