SuSyGame / app.py
pabberpe's picture
Move buttons below the image
bf97d3e
raw
history blame
11.8 kB
import gradio as gr
import numpy as np
import torch
import random
from PIL import Image
from skimage.feature import graycomatrix, graycoprops
from torchvision import transforms
import os
NUM_ROUNDS = 10
PROB_THRESHOLD = 0.3
# Load the model
model = torch.jit.load("SuSy.pt")
def process_image(image):
# Set Parameters
top_k_patches = 5
patch_size = 224
# Get the image dimensions
width, height = image.size
# Calculate the number of patches
num_patches_x = width // patch_size
num_patches_y = height // patch_size
# Divide the image in patches
patches = np.zeros((num_patches_x * num_patches_y, patch_size, patch_size, 3), dtype=np.uint8)
for i in range(num_patches_x):
for j in range(num_patches_y):
x = i * patch_size
y = j * patch_size
patch = image.crop((x, y, x + patch_size, y + patch_size))
patches[i * num_patches_y + j] = np.array(patch)
# Compute the most relevant patches
dissimilarity_scores = []
for patch in patches:
transform_patch = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()])
grayscale_patch = transform_patch(Image.fromarray(patch)).squeeze(0)
glcm = graycomatrix(grayscale_patch, [5], [0], 256, symmetric=True, normed=True)
dissimilarity_scores.append(graycoprops(glcm, "contrast")[0, 0])
# Sort patch indices by their dissimilarity score
sorted_indices = np.argsort(dissimilarity_scores)[::-1]
# Extract top k patches and convert them to tensor
top_patches = patches[sorted_indices[:top_k_patches]]
top_patches = torch.from_numpy(np.transpose(top_patches, (0, 3, 1, 2))) / 255.0
# Predict patches
model.eval()
with torch.no_grad():
preds = model(top_patches)
# Process results
classes = ['Authentic', 'DALL·E 3', 'Stable Diffusion 1.x', 'MJ V5/V6', 'MJ V1/V2', 'Stable Diffusion XL']
mean_probs = preds.mean(dim=0).numpy()
# Create a dictionary of class probabilities
class_probs = {cls: prob for cls, prob in zip(classes, mean_probs)}
# Sort probabilities in descending order
sorted_probs = dict(sorted(class_probs.items(), key=lambda item: item[1], reverse=True))
return sorted_probs
def resize_image(image, max_size=512):
"""Resize image to have a maximum dimension of max_size while preserving aspect ratio"""
width, height = image.size
if width > height:
if width > max_size:
new_width = max_size
new_height = int(height * (max_size / width))
else:
if height > max_size:
new_height = max_size
new_width = int(width * (max_size / height))
else:
return image
return image.resize((new_width, new_height), Image.Resampling.LANCZOS)
class GameState:
def __init__(self):
self.user_score = 0
self.model_score = 0
self.current_round = 0
self.total_rounds = NUM_ROUNDS
self.game_images = []
self.is_game_active = False
self.last_results = None
self.waiting_for_input = True
self.original_image = None
def reset(self):
self.__init__()
game_state = GameState()
def load_images():
real_image_folder = "real_images"
fake_image_folder = "fake_images"
real_images = [os.path.join(real_image_folder, img) for img in os.listdir(real_image_folder)]
fake_images = [os.path.join(fake_image_folder, img) for img in os.listdir(fake_image_folder)]
selected_images = random.sample(real_images, NUM_ROUNDS // 2) + random.sample(fake_images, NUM_ROUNDS // 2)
random.shuffle(selected_images)
return selected_images
def create_score_html():
results_html = ""
if game_state.last_results:
results_html = f"""
<div style='margin-top: 1rem; padding: 1rem; background-color: #e0e0e0; border-radius: 8px; color: #333;'>
<h4 style='color: #333; margin-bottom: 0.5rem;'>Last Round Results:</h4>
<p style='color: #333;'>Your guess: {game_state.last_results['user_guess']}</p>
<p style='color: #333;'>Model's guess: {game_state.last_results['model_guess']}</p>
<p style='color: #333;'>Correct answer: {game_state.last_results['correct_answer']}</p>
</div>
"""
current_display_round = min(game_state.current_round + 1, game_state.total_rounds)
return f"""
<div style='padding: 1rem; background-color: #f0f0f0; border-radius: 8px; color: #333;'>
<h3 style='margin-bottom: 1rem; color: #333;'>Score Board</h3>
<div style='display: flex; justify-content: space-around;'>
<div>
<h4 style='color: #333;'>You</h4>
<p style='font-size: 1.5rem; color: #333;'>{game_state.user_score}</p>
</div>
<div>
<h4 style='color: #333;'>AI Model</h4>
<p style='font-size: 1.5rem; color: #333;'>{game_state.model_score}</p>
</div>
</div>
<div style='margin-top: 1rem;'>
<p style='color: #333;'>Round: {current_display_round}/{game_state.total_rounds}</p>
</div>
{results_html}
</div>
"""
def start_game():
game_state.reset()
game_state.game_images = load_images()
game_state.is_game_active = True
game_state.waiting_for_input = True
# Store original image and create resized version for display
game_state.original_image = Image.open(game_state.game_images[0])
display_image = resize_image(game_state.original_image)
return (
gr.update(value=display_image, visible=True), # Show resized image
gr.update(visible=False), # Hide start button
gr.update(visible=True, interactive=True), # Show Real button
gr.update(visible=True, interactive=True), # Show Fake button
create_score_html(),
gr.update(visible=False) # Hide feedback
)
def submit_guess(user_guess):
if not game_state.is_game_active or not game_state.waiting_for_input:
return [gr.update()] * 6
model_prediction = process_image(game_state.original_image)
correct_answer = "Real" if "real_images" in game_state.game_images[game_state.current_round] else "Fake"
# Determine model's guess based on probabilities
model_guess = "Real" if model_prediction['Authentic'] > PROB_THRESHOLD else "Fake"
# Update scores
if user_guess == correct_answer:
game_state.user_score += 1
if model_guess == correct_answer:
game_state.model_score += 1
# Store last results for display
game_state.last_results = {
'user_guess': user_guess,
'model_guess': model_guess,
'correct_answer': correct_answer
}
game_state.current_round += 1
game_state.waiting_for_input = True
# Check if game is over
if game_state.current_round >= game_state.total_rounds:
game_state.is_game_active = False
return (
gr.update(value=None, visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
create_score_html(),
gr.update(visible=True, value="<div style='text-align: center; margin-top: 20px; font-size: 1.2em;'>Game Over! Click 'Start New Game' to play again.</div>")
)
# Continue to next round
game_state.original_image = Image.open(game_state.game_images[game_state.current_round])
display_image = resize_image(game_state.original_image)
return (
gr.update(value=display_image, visible=True),
gr.update(visible=False),
gr.update(visible=True, interactive=True),
gr.update(visible=True, interactive=True),
create_score_html(),
gr.update(visible=False)
)
# Custom CSS
custom_css = """
#game-container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
#start-button {
max-width: 200px;
margin: 0 auto;
}
#guess-buttons {
display: flex;
gap: 10px;
justify-content: center;
margin-top: 20px;
}
.guess-button {
min-width: 120px;
}
"""
# Define Gradio interface
with gr.Blocks(css=custom_css) as iface:
with gr.Column(elem_id="game-container"):
gr.HTML("""
<table style="border-collapse: collapse; border: none; padding: 20px;">
<tr style="border: none;">
<td style="border: none; vertical-align: top; padding-right: 30px; padding-left: 30px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/62f7a16192950415b637e201/NobqlpFbFkTyBi1LsT9JE.png" alt="SuSy Logo" width="120" style="margin-bottom: 10px;">
</td>
<td style="border: none; vertical-align: top; padding: 10px;">
<p style="margin-bottom: 15px;">Compete against SuSy to spot AI-Generated images! SuSy can distinguish between authentic images and those generated by DALL·E, Midjourney and Stable Diffusion.</p>
<p style="margin-top: 15px;">Learn more about SuSy: <a href="https://arxiv.org/abs/2409.14128">Present and Future Generalization of Synthetic Image Detectors</a></p>
<p style="margin-top: 15px;">
Enter the SuSy-verse!
<a href="https://huggingface.co/HPAI-BSC/SuSy">Model</a> |
<a href="https://github.com/HPAI-BSC/SuSy">Code</a> |
<a href="https://huggingface.co/datasets/HPAI-BSC/SuSy-Dataset">Dataset</a>
</p>
</td>
</tr>
</table>
""")
with gr.Row():
with gr.Column(scale=2):
image_display = gr.Image(
type="pil",
label="Current Image",
interactive=False,
visible=False
)
with gr.Row(elem_id="guess-buttons"):
real_button = gr.Button(
"Real",
visible=False,
variant="primary",
elem_classes=["guess-button"]
)
fake_button = gr.Button(
"Fake",
visible=False,
variant="primary",
elem_classes=["guess-button"]
)
with gr.Column(scale=1):
score_display = gr.HTML()
with gr.Row():
with gr.Column(elem_id="start-button"):
start_button = gr.Button("Start New Game", variant="primary", size="sm")
feedback_display = gr.Markdown(visible=False)
# Event handlers
start_button.click(
fn=start_game,
outputs=[
image_display,
start_button,
real_button,
fake_button,
score_display,
feedback_display
]
)
real_button.click(
fn=lambda: submit_guess("Real"),
outputs=[
image_display,
start_button,
real_button,
fake_button,
score_display,
feedback_display
]
)
fake_button.click(
fn=lambda: submit_guess("Fake"),
outputs=[
image_display,
start_button,
real_button,
fake_button,
score_display,
feedback_display
]
)
# Launch the interface
iface.launch()