Spaces:
Running
Running
File size: 4,592 Bytes
c2a02c6 8a2e1bf c2a02c6 6877db6 48a30b6 3fdd6f1 ec06c4b c8b993f 0d7f3a7 b68774d 9abc2e6 c2a02c6 8a2e1bf c2a02c6 8a2e1bf c2a02c6 38ea622 ee0298f e24c7fa 43efedb 0a37276 38ea622 65d977a 38ea622 65d977a 38ea622 65d977a e24c7fa 65d977a 9e2f96b c8b993f e24c7fa 806931d fa82089 e3df29c 8f90700 efb78a7 8f90700 38ea622 9cffd28 da9bcac e52de1a d6a723e e52de1a e3df29c 05e0ac4 e52de1a e3df29c da9bcac 4ed9060 a0f4539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import streamlit as st
import pandas as pd
from os import path
import sys
import streamlit.components.v1 as components
sys.path.append('code/')
#sys.path.append('ASCARIS/code/')
import pdb_featureVector
import alphafold_featureVector
import argparse
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode,GridUpdateMode
import base64
showWarningOnDirectExecution = False
from huggingface_hub import hf_hub_download
import streamlit as st
import gzip
print('I AM HERE GOD DAMN IT')
st.write('I AM HERE GOD DAMN IT')
path = hf_hub_download(repo_id="HuBioDataLab/AlphafoldStructures", filename="AF-A0A075B6Y9-F1-model_v4.pdb.gz",repo_type = 'dataset')
st.write(path)
pdb_path= hf_hub_download(repo_id="HuBioDataLab/AlphafoldStructures",repo_type = 'dataset', filename="AF-A0A075B6Y9-F1-model_v4.pdb.gz")
st.write('HER')
with gzip.open(pdb_path, mode="rt") as f:
file_content = f.read()
st.write(file_content)
st.write('REH')
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
# Check if 'key' already exists in session_state
# If not, then initialize it
if 'visibility' not in st.session_state:
st.session_state['visibility'] = 'visible'
st.session_state.disabled = False
original_title = '<p style="font-family:Trebuchet MS; color:#FD7456; font-size: 25px; font-weight:bold; text-align:center">ASCARIS</p>'
st.markdown(original_title, unsafe_allow_html=True)
original_title = '<p style="font-family:Trebuchet MS; color:#FD7456; font-size: 25px; font-weight:bold; text-align:center">(Annotation and StruCture-bAsed RepresentatIon of Single amino acid variations)</p>'
st.markdown(original_title, unsafe_allow_html=True)
st.write('')
st.write('')
st.write('')
st.write('')
with st.form('mform', clear_on_submit=False):
source = st.selectbox('Select the protein structure resource (1: PDB-SwissModel-Modbase, 2: AlphaFold)',[1,2])
###source = 1
impute = st.selectbox('Imputation',[True, False])
input_data = st.text_input('Enter SAV data points (Example: Q00889-H-85-D, or Q00889-H-85-D,Q16363-Y-498-H)')
parser = argparse.ArgumentParser(description='ASCARIS')
#parser.add_argument('-s', '--source_option',
# help='Selection of input structure data.\n 1: PDB Structures (default), 2: AlphaFold Structures',
# default=1)
#parser.add_argument('-i', '--input_datapoint',
# help='Input file or query datapoint\n Option 1: Comma-separated list of identifiers (UniProt ID-wt residue-position-mutated residue (e.g. Q9Y4W6-N-432-T or Q9Y4W6-N-432-T, Q9Y4W6-N-432-T)) \n Option 2: Enter comma-separated file path')
#
#parser.add_argument('-impute', '--imputation_state', default='True',
# help='Whether resulting feature vector should be imputed or not. Default True.')
#args = parser.parse_args()
input_set = input_data
###mode = 1
impute = impute
submitted = st.form_submit_button(label="Submit", help=None, on_click=None, args=None, kwargs=None, type="secondary", disabled=False, use_container_width=False)
print('*****************************************')
print('Feature vector generation is in progress. \nPlease check log file for updates..')
print('*****************************************')
###mode = int(mode)
mode = source
selected_df = pd.DataFrame()
st.write('The online tool may be slow, especially while processing multiple SAVs, please consider using the local programmatic version at https://github.com/HUBioDataLab/ASCARIS/')
if submitted:
with st.spinner('In progress...This may take a while...'):
try:
if mode == 1:
selected_df = pdb_featureVector.pdb(input_set, mode, impute)
elif mode == 2:
selected_df = alphafold_featureVector.alphafold(input_set, mode, impute)
else:
selected_df = pd.DataFrame()
except:
selected_df = pd.DataFrame()
pass
if selected_df is None:
st.success('Feature vector failed. Check log file.')
else:
if len(selected_df) != 0 :
st.write(selected_df)
st.success('Feature vector successfully created.')
csv = convert_df(selected_df)
st.download_button("Press to Download the Feature Vector", csv,f"ASCARIS_SAV_rep_{input_set}.csv","text/csv",key='download-csv')
else:
st.success('Feature vector failed. Check log file.')
|