Spaces:
Sleeping
Sleeping
import ssl | |
import requests as r | |
from decimal import * | |
import numpy as np | |
import pandas as pd | |
import json | |
import ast | |
UNIPROT_ANNOTATION_COLS = ['disulfide', 'intMet', 'intramembrane', 'naturalVariant', 'dnaBinding', | |
'activeSite', | |
'nucleotideBinding', 'lipidation', 'site', 'transmembrane', | |
'crosslink', 'mutagenesis', 'strand', | |
'helix', 'turn', 'metalBinding', 'repeat', 'topologicalDomain', | |
'caBinding', 'bindingSite', 'region', | |
'signalPeptide', 'modifiedResidue', 'zincFinger', 'motif', | |
'coiledCoil', 'peptide', | |
'transitPeptide', 'glycosylation', 'propeptide', 'disulfideBinary', | |
'intMetBinary', 'intramembraneBinary', | |
'naturalVariantBinary', 'dnaBindingBinary', 'activeSiteBinary', | |
'nucleotideBindingBinary', 'lipidationBinary', 'siteBinary', | |
'transmembraneBinary', 'crosslinkBinary', 'mutagenesisBinary', | |
'strandBinary', 'helixBinary', 'turnBinary', 'metalBindingBinary', | |
'repeatBinary', 'topologicalDomainBinary', 'caBindingBinary', | |
'bindingSiteBinary', 'regionBinary', 'signalPeptideBinary', | |
'modifiedResidueBinary', 'zincFingerBinary', 'motifBinary', | |
'coiledCoilBinary', 'peptideBinary', 'transitPeptideBinary', | |
'glycosylationBinary', 'propeptideBinary'] | |
annotation_list = UNIPROT_ANNOTATION_COLS[0:30] | |
def add_annotations(dataframe): | |
print('Downloading UniProt sequence annotations...\n') | |
ssl._create_default_https_context = ssl._create_unverified_context | |
original_annot_name = ['DISULFID', 'INIT_MET', 'INTRAMEM', 'VARIANT', 'DNA_BIND', 'ACT_SITE', 'NP_BIND', 'LIPID', | |
'SITE', 'TRANSMEM', 'CROSSLNK', 'MUTAGEN', 'STRAND', 'HELIX', 'TURN', 'METAL', 'REPEAT', 'TOPO_DOM', | |
'CA_BIND', 'BINDING', 'REGION', 'SIGNAL', 'MOD_RES', 'ZN_FING', 'MOTIF', 'COILED', 'PEPTIDE', | |
'TRANSIT', 'CARBOHYD', 'PROPEP'] | |
annotation_list = ['disulfide', 'intMet', 'intramembrane', 'naturalVariant', 'dnaBinding', 'activeSite', | |
'nucleotideBinding', 'lipidation', 'site', 'transmembrane', 'crosslink', 'mutagenesis', 'strand', | |
'helix', 'turn', 'metalBinding', 'repeat', 'topologicalDomain', 'caBinding', 'bindingSite', | |
'region', 'signalPeptide', 'modifiedResidue', 'zincFinger', 'motif', 'coiledCoil', 'peptide', | |
'transitPeptide', 'glycosylation', 'propeptide'] | |
dataframe = dataframe.reset_index().drop(['index'], axis=1) | |
for protein in list(set(dataframe.uniprotID.to_list())): | |
print('Retieving annotations for ' + protein) | |
uniprot_entry = r.get("http://www.uniprot.org/uniprot/" + protein + ".txt") | |
uniprot_entry = uniprot_entry.text.split('\n') | |
annot_for_protein = [] | |
for annotation in original_annot_name: | |
for line in uniprot_entry: | |
if annotation.strip() in line and line.startswith( | |
'FT') and 'evidence' not in line and 'ECO' not in line and 'note' not in line: | |
annot_for_protein.append(list(filter(None, line.split(' ')))[1:]) | |
annotations_present = [] | |
for select in annot_for_protein: | |
if select[0] not in annotations_present: | |
dataframe.loc[dataframe.uniprotID == protein, select[0]] = str((select[1].replace('..', '-') + '; ')) | |
annotations_present.append(select[0]) | |
else: | |
dataframe.loc[dataframe.uniprotID == protein, select[0]] += str((select[1].replace('..', '-') + '; ')) | |
missingAnnotations = list(set(original_annot_name) - set(annotations_present)) | |
for miss in missingAnnotations: | |
dataframe.loc[dataframe.uniprotID == protein, miss] = np.NaN | |
for i in range(len(original_annot_name)): | |
dataframe = dataframe.rename(columns={original_annot_name[i]: annotation_list[i]}) | |
# Fix annotation positions | |
print('Processing positions...\n') | |
for i in dataframe.index: | |
all_positions = [] | |
for annot in annotation_list: | |
if (annot != 'disulfide') & (pd.isna(dataframe.at[i, annot]) != True): | |
dataframe.at[i, annot] = [x for x in [k.strip() for k in dataframe.at[i, annot].split(';')] if x] | |
all_positions.append(dataframe.at[i, annot]) | |
elif (annot == 'disulfide') & (pd.isna(dataframe.at[i, annot]) != True): | |
dataframe.at[i, annot] = dataframe.at[i, annot].split(';') | |
dataframe.at[i, annot] = [i.split('-') for i in dataframe.at[i, annot]] | |
dataframe.at[i, annot] = [e for v in dataframe.at[i, annot] for e in v] | |
dataframe.at[i, annot] = [i for i in dataframe.at[i, annot] if i != ' '] | |
all_positions.append(dataframe.at[i, annot]) | |
dataframe.at[i, annot] = str(dataframe.at[i, annot]) | |
all_positions = [item for sublist in all_positions for item in sublist] | |
updated_allPos = [] | |
for pos in all_positions: | |
if '-' in pos: | |
first = pos.split('-')[0] | |
second = pos.split('-')[1] | |
newPos = list(range(int(first), int(second)+1)) | |
updated_allPos += newPos | |
else: | |
updated_allPos.append(int(pos)) | |
updated_allPos.append(dataframe.at[i, 'pos']) | |
updated_allPos.append(dataframe.at[i, 'domEnd']) | |
updated_allPos.append(dataframe.at[i, 'domStart']) | |
updated_allPos = [int(i) for i in updated_allPos] | |
dataframe.loc[i, 'POSITIONS'] = str(list(set(updated_allPos))) | |
# Add binary annotations | |
print('Adding binary annotations...\n') | |
for i in dataframe.index: | |
for k in annotation_list: # get the positions of each attribute as a list | |
txt = k + 'Binary' | |
dataframe.at[i, txt] = np.NaN | |
try: | |
for positions in dataframe.at[i, k].split(','): | |
position = positions.strip('[').strip(']').replace("'", "") | |
if (position != np.NaN) and (position != '') and ('-' not in position) and (int( | |
dataframe.at[i, 'pos']) == int(position)): | |
dataframe.at[i, txt] = '1' | |
break | |
elif (position != np.NaN) and (position != '') and ('-' not in position) and (int( | |
dataframe.at[i, 'pos']) != int(position)): | |
dataframe.at[i, txt] = '0' | |
elif (position != np.NaN) and (position != '') and ('-' in position): | |
if int(position.split('-')[0]) < int(dataframe.at[i, 'pos']) < int(position.split('-')[1]): | |
dataframe.at[i, txt] = '1' | |
break | |
else: | |
dataframe.at[i, txt] = '0' | |
except: | |
ValueError | |
# Final corrections | |
dataframe = dataframe.replace({'[\'?\']': np.NaN}) | |
dataframe = dataframe.replace({'[]': np.NaN}) | |
dataframe = dataframe.replace({'': np.NaN}) | |
dataframe = dataframe.fillna(np.NaN) | |
return dataframe | |
def changeUPtoPDB(dataframe): | |
for i in dataframe.index: | |
for col in annotation_list: | |
newList = [] | |
if dataframe.at[i, col] != np.NaN: | |
if type(dataframe.at[i, col]) == str: | |
list_v = dataframe.at[i, col][1:-1].split(',') | |
positionList = [i.strip().strip('\'') for i in list_v] | |
elif type(dataframe.at[i, col]) == list: | |
positionList = dataframe.at[i, col] | |
else: | |
positionList = [] | |
for position in positionList: | |
if '-' in position: | |
all_annots = list(range(int(position.split('-')[0]), int(position.split('-')[1])+1)) | |
for annot in all_annots: | |
try: | |
newList.append(ast.literal_eval(dataframe.at[i, 'MATCHDICT'])[str(annot)]) | |
except KeyError: | |
pass | |
except TypeError: | |
pass | |
else: | |
try: | |
newList.append(ast.literal_eval(dataframe.at[i, 'MATCHDICT'])[str(position)]) | |
except KeyError: | |
pass | |
except TypeError: | |
pass | |
dataframe.loc[i, col] = str(newList) | |
return dataframe | |
def changeUPtoModels(dataframe): | |
dataframe.fillna(np.NaN, inplace=True) | |
for i in dataframe.index: | |
for col in annotation_list: | |
newList = [] | |
if (dataframe.at[i, col] != np.NaN) or (type(dataframe.at[i, col]) != 'float'): | |
if (type(dataframe.at[i, col]) == str) and (str(dataframe.at[i, col]) != 'nan') : | |
list_v = dataframe.at[i, col][1:-1].split(',') | |
positionList = [i.strip().strip('\'') for i in list_v] | |
elif type(dataframe.at[i, col]) == list: | |
positionList = dataframe.at[i, col] | |
else: | |
positionList = [] | |
if positionList != []: | |
for position in positionList: | |
if '-' in position: | |
all_annots = list(range(int(position.split('-')[0]), int(position.split('-')[1])+1)) | |
newList += all_annots | |
else: | |
newList.append(str(position)) | |
pass | |
else: | |
all_annots = np.NaN | |
else: | |
all_annots = np.NaN | |
newList = [str(i) for i in newList] | |
dataframe.loc[i, col] = str(newList) | |
return dataframe | |
def isZeroDistance(data): | |
data.fillna(np.NaN, inplace=True) | |
for i in data.index: | |
for col in UNIPROT_ANNOTATION_COLS[0:30]: | |
if data.at[i, col] != np.NaN: | |
if type(data.at[i, col]) != 'dict': | |
annotList = ast.literal_eval(data.at[i, col]) | |
else: | |
annotList = data.at[i, col] | |
annotList = [int(i.strip()) for i in annotList if i != 'null'] | |
if int(data.at[i, 'pos']) in annotList: | |
data.at[i, col] = 'hit' | |
return data | |