ASCARIS / code /add_annotations.py
fatmacankara's picture
Update code/add_annotations.py
6124876
import ssl
import requests as r
from decimal import *
import numpy as np
import pandas as pd
import json
import ast
UNIPROT_ANNOTATION_COLS = ['disulfide', 'intMet', 'intramembrane', 'naturalVariant', 'dnaBinding',
'activeSite',
'nucleotideBinding', 'lipidation', 'site', 'transmembrane',
'crosslink', 'mutagenesis', 'strand',
'helix', 'turn', 'metalBinding', 'repeat', 'topologicalDomain',
'caBinding', 'bindingSite', 'region',
'signalPeptide', 'modifiedResidue', 'zincFinger', 'motif',
'coiledCoil', 'peptide',
'transitPeptide', 'glycosylation', 'propeptide', 'disulfideBinary',
'intMetBinary', 'intramembraneBinary',
'naturalVariantBinary', 'dnaBindingBinary', 'activeSiteBinary',
'nucleotideBindingBinary', 'lipidationBinary', 'siteBinary',
'transmembraneBinary', 'crosslinkBinary', 'mutagenesisBinary',
'strandBinary', 'helixBinary', 'turnBinary', 'metalBindingBinary',
'repeatBinary', 'topologicalDomainBinary', 'caBindingBinary',
'bindingSiteBinary', 'regionBinary', 'signalPeptideBinary',
'modifiedResidueBinary', 'zincFingerBinary', 'motifBinary',
'coiledCoilBinary', 'peptideBinary', 'transitPeptideBinary',
'glycosylationBinary', 'propeptideBinary']
annotation_list = UNIPROT_ANNOTATION_COLS[0:30]
def add_annotations(dataframe):
print('Downloading UniProt sequence annotations...\n')
ssl._create_default_https_context = ssl._create_unverified_context
original_annot_name = ['DISULFID', 'INIT_MET', 'INTRAMEM', 'VARIANT', 'DNA_BIND', 'ACT_SITE', 'NP_BIND', 'LIPID',
'SITE', 'TRANSMEM', 'CROSSLNK', 'MUTAGEN', 'STRAND', 'HELIX', 'TURN', 'METAL', 'REPEAT', 'TOPO_DOM',
'CA_BIND', 'BINDING', 'REGION', 'SIGNAL', 'MOD_RES', 'ZN_FING', 'MOTIF', 'COILED', 'PEPTIDE',
'TRANSIT', 'CARBOHYD', 'PROPEP']
annotation_list = ['disulfide', 'intMet', 'intramembrane', 'naturalVariant', 'dnaBinding', 'activeSite',
'nucleotideBinding', 'lipidation', 'site', 'transmembrane', 'crosslink', 'mutagenesis', 'strand',
'helix', 'turn', 'metalBinding', 'repeat', 'topologicalDomain', 'caBinding', 'bindingSite',
'region', 'signalPeptide', 'modifiedResidue', 'zincFinger', 'motif', 'coiledCoil', 'peptide',
'transitPeptide', 'glycosylation', 'propeptide']
dataframe = dataframe.reset_index().drop(['index'], axis=1)
for protein in list(set(dataframe.uniprotID.to_list())):
print('Retieving annotations for ' + protein)
uniprot_entry = r.get("http://www.uniprot.org/uniprot/" + protein + ".txt")
uniprot_entry = uniprot_entry.text.split('\n')
annot_for_protein = []
for annotation in original_annot_name:
for line in uniprot_entry:
if annotation.strip() in line and line.startswith(
'FT') and 'evidence' not in line and 'ECO' not in line and 'note' not in line:
annot_for_protein.append(list(filter(None, line.split(' ')))[1:])
annotations_present = []
for select in annot_for_protein:
if select[0] not in annotations_present:
dataframe.loc[dataframe.uniprotID == protein, select[0]] = str((select[1].replace('..', '-') + '; '))
annotations_present.append(select[0])
else:
dataframe.loc[dataframe.uniprotID == protein, select[0]] += str((select[1].replace('..', '-') + '; '))
missingAnnotations = list(set(original_annot_name) - set(annotations_present))
for miss in missingAnnotations:
dataframe.loc[dataframe.uniprotID == protein, miss] = np.NaN
for i in range(len(original_annot_name)):
dataframe = dataframe.rename(columns={original_annot_name[i]: annotation_list[i]})
# Fix annotation positions
print('Processing positions...\n')
for i in dataframe.index:
all_positions = []
for annot in annotation_list:
if (annot != 'disulfide') & (pd.isna(dataframe.at[i, annot]) != True):
dataframe.at[i, annot] = [x for x in [k.strip() for k in dataframe.at[i, annot].split(';')] if x]
all_positions.append(dataframe.at[i, annot])
elif (annot == 'disulfide') & (pd.isna(dataframe.at[i, annot]) != True):
dataframe.at[i, annot] = dataframe.at[i, annot].split(';')
dataframe.at[i, annot] = [i.split('-') for i in dataframe.at[i, annot]]
dataframe.at[i, annot] = [e for v in dataframe.at[i, annot] for e in v]
dataframe.at[i, annot] = [i for i in dataframe.at[i, annot] if i != ' ']
all_positions.append(dataframe.at[i, annot])
dataframe.at[i, annot] = str(dataframe.at[i, annot])
all_positions = [item for sublist in all_positions for item in sublist]
updated_allPos = []
for pos in all_positions:
if '-' in pos:
first = pos.split('-')[0]
second = pos.split('-')[1]
newPos = list(range(int(first), int(second)+1))
updated_allPos += newPos
else:
updated_allPos.append(int(pos))
updated_allPos.append(dataframe.at[i, 'pos'])
updated_allPos.append(dataframe.at[i, 'domEnd'])
updated_allPos.append(dataframe.at[i, 'domStart'])
updated_allPos = [int(i) for i in updated_allPos]
dataframe.loc[i, 'POSITIONS'] = str(list(set(updated_allPos)))
# Add binary annotations
print('Adding binary annotations...\n')
for i in dataframe.index:
for k in annotation_list: # get the positions of each attribute as a list
txt = k + 'Binary'
dataframe.at[i, txt] = np.NaN
try:
for positions in dataframe.at[i, k].split(','):
position = positions.strip('[').strip(']').replace("'", "")
if (position != np.NaN) and (position != '') and ('-' not in position) and (int(
dataframe.at[i, 'pos']) == int(position)):
dataframe.at[i, txt] = '1'
break
elif (position != np.NaN) and (position != '') and ('-' not in position) and (int(
dataframe.at[i, 'pos']) != int(position)):
dataframe.at[i, txt] = '0'
elif (position != np.NaN) and (position != '') and ('-' in position):
if int(position.split('-')[0]) < int(dataframe.at[i, 'pos']) < int(position.split('-')[1]):
dataframe.at[i, txt] = '1'
break
else:
dataframe.at[i, txt] = '0'
except:
ValueError
# Final corrections
dataframe = dataframe.replace({'[\'?\']': np.NaN})
dataframe = dataframe.replace({'[]': np.NaN})
dataframe = dataframe.replace({'': np.NaN})
dataframe = dataframe.fillna(np.NaN)
return dataframe
def changeUPtoPDB(dataframe):
for i in dataframe.index:
for col in annotation_list:
newList = []
if dataframe.at[i, col] != np.NaN:
if type(dataframe.at[i, col]) == str:
list_v = dataframe.at[i, col][1:-1].split(',')
positionList = [i.strip().strip('\'') for i in list_v]
elif type(dataframe.at[i, col]) == list:
positionList = dataframe.at[i, col]
else:
positionList = []
for position in positionList:
if '-' in position:
all_annots = list(range(int(position.split('-')[0]), int(position.split('-')[1])+1))
for annot in all_annots:
try:
newList.append(ast.literal_eval(dataframe.at[i, 'MATCHDICT'])[str(annot)])
except KeyError:
pass
except TypeError:
pass
else:
try:
newList.append(ast.literal_eval(dataframe.at[i, 'MATCHDICT'])[str(position)])
except KeyError:
pass
except TypeError:
pass
dataframe.loc[i, col] = str(newList)
return dataframe
def changeUPtoModels(dataframe):
dataframe.fillna(np.NaN, inplace=True)
for i in dataframe.index:
for col in annotation_list:
newList = []
if (dataframe.at[i, col] != np.NaN) or (type(dataframe.at[i, col]) != 'float'):
if (type(dataframe.at[i, col]) == str) and (str(dataframe.at[i, col]) != 'nan') :
list_v = dataframe.at[i, col][1:-1].split(',')
positionList = [i.strip().strip('\'') for i in list_v]
elif type(dataframe.at[i, col]) == list:
positionList = dataframe.at[i, col]
else:
positionList = []
if positionList != []:
for position in positionList:
if '-' in position:
all_annots = list(range(int(position.split('-')[0]), int(position.split('-')[1])+1))
newList += all_annots
else:
newList.append(str(position))
pass
else:
all_annots = np.NaN
else:
all_annots = np.NaN
newList = [str(i) for i in newList]
dataframe.loc[i, col] = str(newList)
return dataframe
def isZeroDistance(data):
data.fillna(np.NaN, inplace=True)
for i in data.index:
for col in UNIPROT_ANNOTATION_COLS[0:30]:
if data.at[i, col] != np.NaN:
if type(data.at[i, col]) != 'dict':
annotList = ast.literal_eval(data.at[i, col])
else:
annotList = data.at[i, col]
annotList = [int(i.strip()) for i in annotList if i != 'null']
if int(data.at[i, 'pos']) in annotList:
data.at[i, col] = 'hit'
return data