Spaces:
Running
Running
Commit
·
dc66b2b
1
Parent(s):
6877db6
Update ASCARIS.py
Browse files- ASCARIS.py +6 -24
ASCARIS.py
CHANGED
@@ -12,35 +12,17 @@ from st_aggrid import AgGrid, GridOptionsBuilder, JsCode,GridUpdateMode
|
|
12 |
import base64
|
13 |
showWarningOnDirectExecution = False
|
14 |
|
|
|
15 |
|
16 |
-
|
17 |
-
MAX_SAMPLES_IN_MEMORY = 1000
|
18 |
-
samples_in_dset = 0
|
19 |
-
dset = Dataset.from_dict({"col1": [], "col2": []}) # empty dataset
|
20 |
-
path_to_save_dir = "HUBioData/input_files"
|
21 |
-
num_chunks = 0
|
22 |
-
for example_dict in custom_example_dict_streamer("HUBioData/AlphafoldStructures"):
|
23 |
-
dset = dset.add_item(example_dict)
|
24 |
-
samples_in_dset += 1
|
25 |
-
if samples_in_dset == MAX_SAMPLES_IN_MEMORY:
|
26 |
-
samples_in_dset = 0
|
27 |
-
dset.save_to_disk(f"{path_to_save_dir}{num_chunks}")
|
28 |
-
num_chunks =+ 1
|
29 |
-
dset = Dataset.from_dict({"col1": [], "col2": []}) # empty dataset
|
30 |
-
if samples_in_dset > 0:
|
31 |
-
dset.save_to_disk(f"{path_to_save_dir}{num_chunks}")
|
32 |
-
num_chunks =+ 1
|
33 |
-
loaded_dsets = [] # memory-mapped
|
34 |
-
for chunk_num in range(num_chunks):
|
35 |
-
dset = Dataset.load_from_disk(f"{path_to_save_dir}{chunk_num}")
|
36 |
-
loaded_dsets.append(dset)
|
37 |
-
final_dset = concatenate_datasets(dset)
|
38 |
-
st.write('FİNAL DSET')
|
39 |
-
st.write(final_dset)
|
40 |
|
|
|
41 |
|
42 |
|
|
|
43 |
|
|
|
|
|
44 |
|
45 |
def convert_df(df):
|
46 |
return df.to_csv(index=False).encode('utf-8')
|
|
|
12 |
import base64
|
13 |
showWarningOnDirectExecution = False
|
14 |
|
15 |
+
from datasets import load_dataset
|
16 |
|
17 |
+
# Replace 'dataset_name' with the name of the dataset you want to use
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
dataset = load_dataset('HUBioDataLab/AlphafoldStructures')
|
20 |
|
21 |
|
22 |
+
file_path = 'AF-A0A075B6Y9-F1-model_v4.cif.gz'
|
23 |
|
24 |
+
# Access the file content
|
25 |
+
st.write(file_path)
|
26 |
|
27 |
def convert_df(df):
|
28 |
return df.to_csv(index=False).encode('utf-8')
|