File size: 4,992 Bytes
0b7b562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

import torch

def discriminator_loss(generator, discriminator, mol_graph, adj, annot, batch_size, device, grad_pen, lambda_gp,z_edge,z_node):
    
    # Compute loss with real molecules.
    
    logits_real_disc = discriminator(mol_graph)              
                        
    prediction_real =  - torch.mean(logits_real_disc)

    # Compute loss with fake molecules.

    node, edge, node_sample, edge_sample  = generator(z_edge,  z_node)

    graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1)
    
    logits_fake_disc = discriminator(graph.detach())
        
    prediction_fake = torch.mean(logits_fake_disc)
    
    # Compute gradient loss.
    
    eps = torch.rand(mol_graph.size(0),1).to(device)
    x_int0 = (eps * mol_graph + (1. - eps) * graph).requires_grad_(True)

    grad0 = discriminator(x_int0)
    d_loss_gp = grad_pen(grad0, x_int0) 
    
    # Calculate total loss
    
    d_loss = prediction_fake + prediction_real +  d_loss_gp * lambda_gp
    
    return node, edge,d_loss

    
def generator_loss(generator, discriminator, v, adj, annot, batch_size, penalty, matrices2mol, fps_r,submodel):
    
    # Compute loss with fake molecules.
   
    node, edge, node_sample, edge_sample  = generator(adj,  annot)
   
    
    graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1)
   
 
    logits_fake_disc = discriminator(graph)
    
    prediction_fake = - torch.mean(logits_fake_disc)
    
    # Produce molecules.

    g_edges_hat_sample = torch.max(edge_sample, -1)[1] 
    g_nodes_hat_sample = torch.max(node_sample , -1)[1]   
                
    fake_mol = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True) 
            for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]        
    g_loss = prediction_fake
    # Compute penalty loss.
    if submodel == "RL":
        reward = penalty(fake_mol, fps_r)
    
        # Reinforcement Loss
   
        rew_fake = v(graph)

        reward_loss =  torch.mean(rew_fake) ** 2 + reward    
    
        # Calculate total loss
    
        g_loss = prediction_fake + reward_loss * 1
    
    
    return g_loss, fake_mol, g_edges_hat_sample, g_nodes_hat_sample, node, edge

def discriminator2_loss(generator, discriminator, mol_graph, adj, annot, batch_size, device, grad_pen, lambda_gp,akt1_adj,akt1_annot):

    # Generate molecules.
    
    dr_edges, dr_nodes = generator(adj, 
                                annot, 
                                akt1_adj,
                                akt1_annot)
    
    
    dr_edges_hat = dr_edges.view(batch_size, -1)
    
    dr_nodes_hat = dr_nodes.view(batch_size, -1)

    dr_graph = torch.cat((dr_nodes_hat, dr_edges_hat), dim=-1)                    

    # Compute loss with fake molecules.
    
    dr_logits_fake = discriminator(dr_graph.detach())

    d2_loss_fake = torch.mean(dr_logits_fake)
    
    # Compute loss with real molecules.
    
    dr_logits_real2 = discriminator(mol_graph)

    d2_loss_real = - torch.mean(dr_logits_real2)
    
    # Compute gradient loss.  
    
    eps_dr = torch.rand(mol_graph.size(0),1).to(device)
    x_int0_dr = (eps_dr * mol_graph + (1. - eps_dr) * dr_graph).requires_grad_(True)


    grad0_dr = discriminator(x_int0_dr)
    d2_loss_gp = grad_pen(grad0_dr, x_int0_dr) 
    
    # Compute total loss.
    
    d2_loss = d2_loss_fake + d2_loss_real + d2_loss_gp * lambda_gp
    
    return d2_loss

def generator2_loss(generator, discriminator, v, adj, annot, batch_size, penalty, matrices2mol, fps_r,ak1_adj,akt1_annot, submodel):
    
    # Generate molecules.
    
    dr_edges_g, dr_nodes_g = generator(adj, 
                                annot, 
                                ak1_adj,
                                akt1_annot)
    
    dr_edges_hat_g = dr_edges_g.view(batch_size, -1)
    
    dr_nodes_hat_g = dr_nodes_g.view(batch_size, -1)

    dr_graph_g = torch.cat((dr_nodes_hat_g, dr_edges_hat_g), dim=-1)      
    
    # Compute loss with fake molecules.

    dr_g_edges_hat_sample, dr_g_nodes_hat_sample = torch.max(dr_edges_g, -1)[1], torch.max(dr_nodes_g, -1)[1]
         
    g_tra_logits_fake2 = discriminator(dr_graph_g)      
   
    g2_loss_fake = - torch.mean(g_tra_logits_fake2)                                                            

    # Reward
    fake_mol_g = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True) 
                for e_, n_ in zip(dr_g_edges_hat_sample, dr_g_nodes_hat_sample)]       
    g2_loss =  g2_loss_fake    
    if submodel == "RL":
        reward2 = penalty(fake_mol_g, fps_r)
    
        # Reinforcement Loss
        
        rew_fake2 = v(dr_graph_g)
        reward_loss2 =  torch.mean(rew_fake2) ** 2 + reward2
        
        # Calculate total loss
        
        g2_loss =  g2_loss_fake + reward_loss2 * 10    
    
    return g2_loss, fake_mol_g, dr_g_edges_hat_sample, dr_g_nodes_hat_sample#, reward2