Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from torch.nn.modules.module import Module | |
from torch.nn import functional as F | |
from torch.nn import Embedding, ModuleList | |
from torch_geometric.nn import PNAConv, global_add_pool, Set2Set, GraphMultisetTransformer | |
import math | |
class MLP(nn.Module): | |
def __init__(self, act, in_feat, hid_feat=None, out_feat=None, | |
dropout=0.): | |
super().__init__() | |
if not hid_feat: | |
hid_feat = in_feat | |
if not out_feat: | |
out_feat = in_feat | |
self.fc1 = nn.Linear(in_feat, hid_feat) | |
self.act = torch.nn.ReLU() | |
self.fc2 = nn.Linear(hid_feat,out_feat) | |
self.droprateout = nn.Dropout(dropout) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.fc2(x) | |
return self.droprateout(x) | |
class Attention_new(nn.Module): | |
def __init__(self, dim, heads, act, attention_dropout=0., proj_dropout=0.): | |
super().__init__() | |
assert dim % heads == 0 | |
self.heads = heads | |
self.scale = 1./dim**0.5 | |
self.q = nn.Linear(dim, dim) | |
self.k = nn.Linear(dim, dim) | |
self.v = nn.Linear(dim, dim) | |
self.e = nn.Linear(dim, dim) | |
#self.attention_dropout = nn.Dropout(attention_dropout) | |
self.d_k = dim // heads | |
self.heads = heads | |
self.out_e = nn.Linear(dim,dim) | |
self.out_n = nn.Linear(dim, dim) | |
def forward(self, node, edge): | |
b, n, c = node.shape | |
q_embed = self.q(node).view(-1, n, self.heads, c//self.heads) | |
k_embed = self.k(node).view(-1, n, self.heads, c//self.heads) | |
v_embed = self.v(node).view(-1, n, self.heads, c//self.heads) | |
e_embed = self.e(edge).view(-1, n, n, self.heads, c//self.heads) | |
q_embed = q_embed.unsqueeze(2) | |
k_embed = k_embed.unsqueeze(1) | |
attn = q_embed * k_embed | |
attn = attn/ math.sqrt(self.d_k) | |
attn = attn * (e_embed + 1) * e_embed | |
edge = self.out_e(attn.flatten(3)) | |
attn = F.softmax(attn, dim=2) | |
v_embed = v_embed.unsqueeze(1) | |
v_embed = attn * v_embed | |
v_embed = v_embed.sum(dim=2).flatten(2) | |
node = self.out_n(v_embed) | |
return node, edge | |
class Encoder_Block(nn.Module): | |
def __init__(self, dim, heads,act, mlp_ratio=4, drop_rate=0., ): | |
super().__init__() | |
self.ln1 = nn.LayerNorm(dim) | |
self.attn = Attention_new(dim, heads, act, drop_rate, drop_rate) | |
self.ln3 = nn.LayerNorm(dim) | |
self.ln4 = nn.LayerNorm(dim) | |
self.mlp = MLP(act,dim,dim*mlp_ratio, dim, dropout=drop_rate) | |
self.mlp2 = MLP(act,dim,dim*mlp_ratio, dim, dropout=drop_rate) | |
self.ln5 = nn.LayerNorm(dim) | |
self.ln6 = nn.LayerNorm(dim) | |
def forward(self, x,y): | |
x1 = self.ln1(x) | |
x2,y1 = self.attn(x1,y) | |
x2 = x1 + x2 | |
y2 = y1 + y | |
x2 = self.ln3(x2) | |
y2 = self.ln4(y2) | |
x = self.ln5(x2 + self.mlp(x2)) | |
y = self.ln6(y2 + self.mlp2(y2)) | |
return x, y | |
class TransformerEncoder(nn.Module): | |
def __init__(self, dim, depth, heads, act, mlp_ratio=4, drop_rate=0.1): | |
super().__init__() | |
self.Encoder_Blocks = nn.ModuleList([ | |
Encoder_Block(dim, heads, act, mlp_ratio, drop_rate) | |
for i in range(depth)]) | |
def forward(self, x,y): | |
for Encoder_Block in self.Encoder_Blocks: | |
x, y = Encoder_Block(x,y) | |
return x, y | |
class enc_dec_attention(nn.Module): | |
def __init__(self, dim, heads, attention_dropout=0., proj_dropout=0.): | |
super().__init__() | |
self.dim = dim | |
self.heads = heads | |
self.scale = 1./dim**0.5 | |
"query is molecules" | |
"key is prot" | |
"values is again molecule" | |
self.q_mx = nn.Linear(dim,dim) | |
self.k_px = nn.Linear(dim,dim) | |
self.v_mx = nn.Linear(dim,dim) | |
self.k_pa = nn.Linear(dim,dim) | |
self.v_ma = nn.Linear(dim,dim) | |
#self.dropout_dec = nn.Dropout(proj_dropout) | |
self.out_nd = nn.Linear(dim, dim) | |
self.out_ed = nn.Linear(dim,dim) | |
def forward(self, mol_annot, prot_annot, mol_adj, prot_adj): | |
b, n, c = mol_annot.shape | |
_, m, _ = prot_annot.shape | |
query_mol_annot = self.q_mx(mol_annot).view(-1,m, self.heads, c//self.heads) | |
key_prot_annot = self.k_px(prot_annot).view(-1,n, self.heads, c//self.heads) | |
value_mol_annot = self.v_mx(mol_annot).view(-1,m, self.heads, c//self.heads) | |
mol_e = self.v_ma(mol_adj).view(-1,m,m, self.heads, c//self.heads) | |
prot_e = self.k_pa(prot_adj).view(-1,m,m, self.heads, c//self.heads) | |
query_mol_annot = query_mol_annot.unsqueeze(2) | |
key_prot_annot = key_prot_annot.unsqueeze(1) | |
#attn = torch.einsum('bnchd,bmahd->bnahd', query_mol_annot, key_prot_annot) | |
attn = query_mol_annot * key_prot_annot | |
attn = attn/ math.sqrt(self.dim) | |
attn = attn * (prot_e + 1) * mol_e | |
mol_e_new = attn.flatten(3) | |
mol_adj = self.out_ed(mol_e_new) | |
attn = F.softmax(attn, dim=2) | |
value_mol_annot = value_mol_annot.unsqueeze(1) | |
value_mol_annot = attn * value_mol_annot | |
value_mol_annot = value_mol_annot.sum(dim=2).flatten(2) | |
mol_annot = self.out_nd(value_mol_annot) | |
return mol_annot, prot_annot, mol_adj, prot_adj | |
class Decoder_Block(nn.Module): | |
def __init__(self, dim, heads, mlp_ratio=4, drop_rate=0.): | |
super().__init__() | |
self.ln1_ma = nn.LayerNorm(dim) | |
self.ln1_pa = nn.LayerNorm(dim) | |
self.ln1_mx = nn.LayerNorm(dim) | |
self.ln1_px = nn.LayerNorm(dim) | |
self.attn2 = Attention_new(dim, heads, drop_rate, drop_rate) | |
self.ln2_pa = nn.LayerNorm(dim) | |
self.ln2_px = nn.LayerNorm(dim) | |
self.dec_attn = enc_dec_attention(dim, heads, drop_rate, drop_rate) | |
self.ln3_ma = nn.LayerNorm(dim) | |
self.ln3_mx = nn.LayerNorm(dim) | |
self.mlp_ma = MLP(dim, dim, dropout=drop_rate) | |
self.mlp_mx = MLP(dim, dim, dropout=drop_rate) | |
self.ln4_ma = nn.LayerNorm(dim) | |
self.ln4_mx = nn.LayerNorm(dim) | |
def forward(self,mol_annot, prot_annot, mol_adj, prot_adj): | |
mol_annot = self.ln1_mx(mol_annot) | |
mol_adj = self.ln1_ma(mol_adj) | |
prot_annot = self.ln1_px(prot_annot) | |
prot_adj = self.ln1_pa(prot_adj) | |
px1, pa1= self.attn2(prot_annot, prot_adj) | |
prot_annot = prot_annot + px1 | |
prot_adj = prot_adj + pa1 | |
prot_annot = self.ln2_px(prot_annot) | |
prot_adj = self.ln2_pa(prot_adj) | |
mx1, prot_annot, ma1, prot_adj = self.dec_attn(mol_annot,prot_annot,mol_adj,prot_adj) | |
ma1 = mol_adj + ma1 | |
mx1 = mol_annot + mx1 | |
ma2 = self.ln3_ma(ma1) | |
mx2 = self.ln3_mx(mx1) | |
ma3 = self.mlp_ma(ma2) | |
mx3 = self.mlp_mx(mx2) | |
ma = ma3 + ma2 | |
mx = mx3 + mx2 | |
mol_adj = self.ln4_ma(ma) | |
mol_annot = self.ln4_mx(mx) | |
return mol_annot, prot_annot, mol_adj, prot_adj | |
class TransformerDecoder(nn.Module): | |
def __init__(self, dim, depth, heads, mlp_ratio=4, drop_rate=0.): | |
super().__init__() | |
self.Decoder_Blocks = nn.ModuleList([ | |
Decoder_Block(dim, heads, mlp_ratio, drop_rate) | |
for i in range(depth)]) | |
def forward(self, mol_annot, prot_annot, mol_adj, prot_adj): | |
for Decoder_Block in self.Decoder_Blocks: | |
mol_annot, prot_annot, mol_adj, prot_adj = Decoder_Block(mol_annot, prot_annot, mol_adj, prot_adj) | |
return mol_annot, prot_annot,mol_adj, prot_adj | |
"""class PNA(torch.nn.Module): | |
def __init__(self,deg,agg,sca,pna_in_ch,pna_out_ch,edge_dim,towers,pre_lay,post_lay,pna_layer_num, graph_add): | |
super(PNA,self).__init__() | |
self.node_emb = Embedding(30, pna_in_ch) | |
self.edge_emb = Embedding(30, edge_dim) | |
degree = deg | |
aggregators = agg.split(",") #["max"] # 'sum', 'min', 'max' 'std', 'var' 'mean', ## buraları değiştirerek bak. | |
scalers = sca.split(",") # ['amplification', 'attenuation'] # 'amplification', 'attenuation' , 'linear', 'inverse_linear, 'identity' | |
self.graph_add = graph_add | |
self.convs = ModuleList() | |
self.batch_norms = ModuleList() | |
for _ in range(pna_layer_num): ##### layer sayısını hyperparameter olarak ayarla?? | |
conv = PNAConv(in_channels=pna_in_ch, out_channels=pna_out_ch, | |
aggregators=aggregators, scalers=scalers, deg=degree, | |
edge_dim=edge_dim, towers=towers, pre_layers=pre_lay, post_layers=post_lay, ## tower sayısını değiştirerek dene, default - 1 | |
divide_input=True) | |
self.convs.append(conv) | |
self.batch_norms.append(nn.LayerNorm(pna_out_ch)) | |
#self.graph_multitrans = GraphMultisetTransformer(in_channels=pna_out_ch, hidden_channels= 200, | |
#out_channels= pna_out_ch, layer_norm = True) | |
if self.graph_add == "set2set": | |
self.s2s = Set2Set(in_channels=pna_out_ch, processing_steps=1, num_layers=1) | |
if self.graph_add == "set2set": | |
pna_out_ch = pna_out_ch*2 | |
self.mlp = nn.Sequential(nn.Linear(pna_out_ch,pna_out_ch), nn.Tanh(), nn.Linear(pna_out_ch,25), nn.Tanh(),nn.Linear(25,1)) | |
def forward(self, x, edge_index, edge_attr, batch): | |
x = self.node_emb(x.squeeze()) | |
edge_attr = self.edge_emb(edge_attr) | |
for conv, batch_norm in zip(self.convs, self.batch_norms): | |
x = F.relu(batch_norm(conv(x, edge_index, edge_attr))) | |
if self.graph_add == "global_add": | |
x = global_add_pool(x, batch.squeeze()) | |
elif self.graph_add == "set2set": | |
x = self.s2s(x, batch.squeeze()) | |
#elif self.graph_add == "graph_multitrans": | |
#x = self.graph_multitrans(x,batch.squeeze(),edge_index) | |
x = self.mlp(x) | |
return x""" | |
"""class GraphConvolution(nn.Module): | |
def __init__(self, in_features, out_feature_list, b_dim, dropout,gcn_depth): | |
super(GraphConvolution, self).__init__() | |
self.in_features = in_features | |
self.gcn_depth = gcn_depth | |
self.out_feature_list = out_feature_list | |
self.gcn_in = nn.Sequential(nn.Linear(in_features,out_feature_list[0]),nn.Tanh(), | |
nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(), | |
nn.Linear(out_feature_list[0], out_feature_list[0]), nn.Dropout(dropout)) | |
self.gcn_convs = nn.ModuleList() | |
for _ in range(gcn_depth): | |
gcn_conv = nn.Sequential(nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(), | |
nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(), | |
nn.Linear(out_feature_list[0], out_feature_list[0]), nn.Dropout(dropout)) | |
self.gcn_convs.append(gcn_conv) | |
self.gcn_out = nn.Sequential(nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(), | |
nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(), | |
nn.Linear(out_feature_list[0], out_feature_list[1]), nn.Dropout(dropout)) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, input, adj, activation=None): | |
# input : 16x9x9 | |
# adj : 16x4x9x9 | |
hidden = torch.stack([self.gcn_in(input) for _ in range(adj.size(1))], 1) | |
hidden = torch.einsum('bijk,bikl->bijl', (adj, hidden)) | |
hidden = torch.sum(hidden, 1) + self.gcn_in(input) | |
hidden = activation(hidden) if activation is not None else hidden | |
for gcn_conv in self.gcn_convs: | |
hidden1 = torch.stack([gcn_conv(hidden) for _ in range(adj.size(1))], 1) | |
hidden1 = torch.einsum('bijk,bikl->bijl', (adj, hidden1)) | |
hidden = torch.sum(hidden1, 1) + gcn_conv(hidden) | |
hidden = activation(hidden) if activation is not None else hidden | |
output = torch.stack([self.gcn_out(hidden) for _ in range(adj.size(1))], 1) | |
output = torch.einsum('bijk,bikl->bijl', (adj, output)) | |
output = torch.sum(output, 1) + self.gcn_out(hidden) | |
output = activation(output) if activation is not None else output | |
return output | |
class GraphAggregation(Module): | |
def __init__(self, in_features, out_features, m_dim, dropout): | |
super(GraphAggregation, self).__init__() | |
self.sigmoid_linear = nn.Sequential(nn.Linear(in_features+m_dim, out_features), nn.Sigmoid()) | |
self.tanh_linear = nn.Sequential(nn.Linear(in_features+m_dim, out_features), nn.Tanh()) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, input, activation): | |
i = self.sigmoid_linear(input) | |
j = self.tanh_linear(input) | |
output = torch.sum(torch.mul(i,j), 1) | |
output = activation(output) if activation is not None\ | |
else output | |
output = self.dropout(output) | |
return output""" | |
"""class Attention(nn.Module): | |
def __init__(self, dim, heads=4, attention_dropout=0., proj_dropout=0.): | |
super().__init__() | |
self.heads = heads | |
self.scale = 1./dim**0.5 | |
#self.scale = torch.div(1, torch.pow(dim, 0.5)) #1./torch.pow(dim, 0.5) #dim**0.5 torch.div(x, 0.5) | |
self.qkv = nn.Linear(dim, dim*3, bias=False) | |
self.attention_dropout = nn.Dropout(attention_dropout) | |
self.out = nn.Sequential( | |
nn.Linear(dim, dim), | |
nn.Dropout(proj_dropout) | |
) | |
#self.noise_strength_1 = torch.nn.Parameter(torch.zeros([])) | |
def forward(self, x): | |
b, n, c = x.shape | |
#x = x + torch.randn([x.size(0), x.size(1), 1], device=x.device) * self.noise_strength_1 | |
qkv = self.qkv(x).reshape(b, n, 3, self.heads, c//self.heads) | |
q, k, v = qkv.permute(2, 0, 3, 1, 4) | |
dot = (q @ k.transpose(-2, -1)) * self.scale | |
attn = dot.softmax(dim=-1) | |
attn = self.attention_dropout(attn) | |
x = (attn @ v).transpose(1, 2).reshape(b, n, c) | |
x = self.out(x) | |
return x, attn""" | |