DrugGEN / layers.py
osbm's picture
Upload layers.py
fd37f66
raw
history blame
15.3 kB
import torch
import torch.nn as nn
from torch.nn.modules.module import Module
from torch.nn import functional as F
from torch.nn import Embedding, ModuleList
from torch_geometric.nn import PNAConv, global_add_pool, Set2Set, GraphMultisetTransformer
import math
class MLP(nn.Module):
def __init__(self, act, in_feat, hid_feat=None, out_feat=None,
dropout=0.):
super().__init__()
if not hid_feat:
hid_feat = in_feat
if not out_feat:
out_feat = in_feat
self.fc1 = nn.Linear(in_feat, hid_feat)
self.act = torch.nn.ReLU()
self.fc2 = nn.Linear(hid_feat,out_feat)
self.droprateout = nn.Dropout(dropout)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return self.droprateout(x)
class Attention_new(nn.Module):
def __init__(self, dim, heads, act, attention_dropout=0., proj_dropout=0.):
super().__init__()
assert dim % heads == 0
self.heads = heads
self.scale = 1./dim**0.5
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.e = nn.Linear(dim, dim)
#self.attention_dropout = nn.Dropout(attention_dropout)
self.d_k = dim // heads
self.heads = heads
self.out_e = nn.Linear(dim,dim)
self.out_n = nn.Linear(dim, dim)
def forward(self, node, edge):
b, n, c = node.shape
q_embed = self.q(node).view(-1, n, self.heads, c//self.heads)
k_embed = self.k(node).view(-1, n, self.heads, c//self.heads)
v_embed = self.v(node).view(-1, n, self.heads, c//self.heads)
e_embed = self.e(edge).view(-1, n, n, self.heads, c//self.heads)
q_embed = q_embed.unsqueeze(2)
k_embed = k_embed.unsqueeze(1)
attn = q_embed * k_embed
attn = attn/ math.sqrt(self.d_k)
attn = attn * (e_embed + 1) * e_embed
edge = self.out_e(attn.flatten(3))
attn = F.softmax(attn, dim=2)
v_embed = v_embed.unsqueeze(1)
v_embed = attn * v_embed
v_embed = v_embed.sum(dim=2).flatten(2)
node = self.out_n(v_embed)
return node, edge
class Encoder_Block(nn.Module):
def __init__(self, dim, heads,act, mlp_ratio=4, drop_rate=0., ):
super().__init__()
self.ln1 = nn.LayerNorm(dim)
self.attn = Attention_new(dim, heads, act, drop_rate, drop_rate)
self.ln3 = nn.LayerNorm(dim)
self.ln4 = nn.LayerNorm(dim)
self.mlp = MLP(act,dim,dim*mlp_ratio, dim, dropout=drop_rate)
self.mlp2 = MLP(act,dim,dim*mlp_ratio, dim, dropout=drop_rate)
self.ln5 = nn.LayerNorm(dim)
self.ln6 = nn.LayerNorm(dim)
def forward(self, x,y):
x1 = self.ln1(x)
x2,y1 = self.attn(x1,y)
x2 = x1 + x2
y2 = y1 + y
x2 = self.ln3(x2)
y2 = self.ln4(y2)
x = self.ln5(x2 + self.mlp(x2))
y = self.ln6(y2 + self.mlp2(y2))
return x, y
class TransformerEncoder(nn.Module):
def __init__(self, dim, depth, heads, act, mlp_ratio=4, drop_rate=0.1):
super().__init__()
self.Encoder_Blocks = nn.ModuleList([
Encoder_Block(dim, heads, act, mlp_ratio, drop_rate)
for i in range(depth)])
def forward(self, x,y):
for Encoder_Block in self.Encoder_Blocks:
x, y = Encoder_Block(x,y)
return x, y
class enc_dec_attention(nn.Module):
def __init__(self, dim, heads, attention_dropout=0., proj_dropout=0.):
super().__init__()
self.dim = dim
self.heads = heads
self.scale = 1./dim**0.5
"query is molecules"
"key is prot"
"values is again molecule"
self.q_mx = nn.Linear(dim,dim)
self.k_px = nn.Linear(dim,dim)
self.v_mx = nn.Linear(dim,dim)
self.k_pa = nn.Linear(dim,dim)
self.v_ma = nn.Linear(dim,dim)
#self.dropout_dec = nn.Dropout(proj_dropout)
self.out_nd = nn.Linear(dim, dim)
self.out_ed = nn.Linear(dim,dim)
def forward(self, mol_annot, prot_annot, mol_adj, prot_adj):
b, n, c = mol_annot.shape
_, m, _ = prot_annot.shape
query_mol_annot = self.q_mx(mol_annot).view(-1,m, self.heads, c//self.heads)
key_prot_annot = self.k_px(prot_annot).view(-1,n, self.heads, c//self.heads)
value_mol_annot = self.v_mx(mol_annot).view(-1,m, self.heads, c//self.heads)
mol_e = self.v_ma(mol_adj).view(-1,m,m, self.heads, c//self.heads)
prot_e = self.k_pa(prot_adj).view(-1,m,m, self.heads, c//self.heads)
query_mol_annot = query_mol_annot.unsqueeze(2)
key_prot_annot = key_prot_annot.unsqueeze(1)
#attn = torch.einsum('bnchd,bmahd->bnahd', query_mol_annot, key_prot_annot)
attn = query_mol_annot * key_prot_annot
attn = attn/ math.sqrt(self.dim)
attn = attn * (prot_e + 1) * mol_e
mol_e_new = attn.flatten(3)
mol_adj = self.out_ed(mol_e_new)
attn = F.softmax(attn, dim=2)
value_mol_annot = value_mol_annot.unsqueeze(1)
value_mol_annot = attn * value_mol_annot
value_mol_annot = value_mol_annot.sum(dim=2).flatten(2)
mol_annot = self.out_nd(value_mol_annot)
return mol_annot, prot_annot, mol_adj, prot_adj
class Decoder_Block(nn.Module):
def __init__(self, dim, heads, mlp_ratio=4, drop_rate=0.):
super().__init__()
self.ln1_ma = nn.LayerNorm(dim)
self.ln1_pa = nn.LayerNorm(dim)
self.ln1_mx = nn.LayerNorm(dim)
self.ln1_px = nn.LayerNorm(dim)
self.attn2 = Attention_new(dim, heads, drop_rate, drop_rate)
self.ln2_pa = nn.LayerNorm(dim)
self.ln2_px = nn.LayerNorm(dim)
self.dec_attn = enc_dec_attention(dim, heads, drop_rate, drop_rate)
self.ln3_ma = nn.LayerNorm(dim)
self.ln3_mx = nn.LayerNorm(dim)
self.mlp_ma = MLP(dim, dim, dropout=drop_rate)
self.mlp_mx = MLP(dim, dim, dropout=drop_rate)
self.ln4_ma = nn.LayerNorm(dim)
self.ln4_mx = nn.LayerNorm(dim)
def forward(self,mol_annot, prot_annot, mol_adj, prot_adj):
mol_annot = self.ln1_mx(mol_annot)
mol_adj = self.ln1_ma(mol_adj)
prot_annot = self.ln1_px(prot_annot)
prot_adj = self.ln1_pa(prot_adj)
px1, pa1= self.attn2(prot_annot, prot_adj)
prot_annot = prot_annot + px1
prot_adj = prot_adj + pa1
prot_annot = self.ln2_px(prot_annot)
prot_adj = self.ln2_pa(prot_adj)
mx1, prot_annot, ma1, prot_adj = self.dec_attn(mol_annot,prot_annot,mol_adj,prot_adj)
ma1 = mol_adj + ma1
mx1 = mol_annot + mx1
ma2 = self.ln3_ma(ma1)
mx2 = self.ln3_mx(mx1)
ma3 = self.mlp_ma(ma2)
mx3 = self.mlp_mx(mx2)
ma = ma3 + ma2
mx = mx3 + mx2
mol_adj = self.ln4_ma(ma)
mol_annot = self.ln4_mx(mx)
return mol_annot, prot_annot, mol_adj, prot_adj
class TransformerDecoder(nn.Module):
def __init__(self, dim, depth, heads, mlp_ratio=4, drop_rate=0.):
super().__init__()
self.Decoder_Blocks = nn.ModuleList([
Decoder_Block(dim, heads, mlp_ratio, drop_rate)
for i in range(depth)])
def forward(self, mol_annot, prot_annot, mol_adj, prot_adj):
for Decoder_Block in self.Decoder_Blocks:
mol_annot, prot_annot, mol_adj, prot_adj = Decoder_Block(mol_annot, prot_annot, mol_adj, prot_adj)
return mol_annot, prot_annot,mol_adj, prot_adj
"""class PNA(torch.nn.Module):
def __init__(self,deg,agg,sca,pna_in_ch,pna_out_ch,edge_dim,towers,pre_lay,post_lay,pna_layer_num, graph_add):
super(PNA,self).__init__()
self.node_emb = Embedding(30, pna_in_ch)
self.edge_emb = Embedding(30, edge_dim)
degree = deg
aggregators = agg.split(",") #["max"] # 'sum', 'min', 'max' 'std', 'var' 'mean', ## buraları değiştirerek bak.
scalers = sca.split(",") # ['amplification', 'attenuation'] # 'amplification', 'attenuation' , 'linear', 'inverse_linear, 'identity'
self.graph_add = graph_add
self.convs = ModuleList()
self.batch_norms = ModuleList()
for _ in range(pna_layer_num): ##### layer sayısını hyperparameter olarak ayarla??
conv = PNAConv(in_channels=pna_in_ch, out_channels=pna_out_ch,
aggregators=aggregators, scalers=scalers, deg=degree,
edge_dim=edge_dim, towers=towers, pre_layers=pre_lay, post_layers=post_lay, ## tower sayısını değiştirerek dene, default - 1
divide_input=True)
self.convs.append(conv)
self.batch_norms.append(nn.LayerNorm(pna_out_ch))
#self.graph_multitrans = GraphMultisetTransformer(in_channels=pna_out_ch, hidden_channels= 200,
#out_channels= pna_out_ch, layer_norm = True)
if self.graph_add == "set2set":
self.s2s = Set2Set(in_channels=pna_out_ch, processing_steps=1, num_layers=1)
if self.graph_add == "set2set":
pna_out_ch = pna_out_ch*2
self.mlp = nn.Sequential(nn.Linear(pna_out_ch,pna_out_ch), nn.Tanh(), nn.Linear(pna_out_ch,25), nn.Tanh(),nn.Linear(25,1))
def forward(self, x, edge_index, edge_attr, batch):
x = self.node_emb(x.squeeze())
edge_attr = self.edge_emb(edge_attr)
for conv, batch_norm in zip(self.convs, self.batch_norms):
x = F.relu(batch_norm(conv(x, edge_index, edge_attr)))
if self.graph_add == "global_add":
x = global_add_pool(x, batch.squeeze())
elif self.graph_add == "set2set":
x = self.s2s(x, batch.squeeze())
#elif self.graph_add == "graph_multitrans":
#x = self.graph_multitrans(x,batch.squeeze(),edge_index)
x = self.mlp(x)
return x"""
"""class GraphConvolution(nn.Module):
def __init__(self, in_features, out_feature_list, b_dim, dropout,gcn_depth):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.gcn_depth = gcn_depth
self.out_feature_list = out_feature_list
self.gcn_in = nn.Sequential(nn.Linear(in_features,out_feature_list[0]),nn.Tanh(),
nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(),
nn.Linear(out_feature_list[0], out_feature_list[0]), nn.Dropout(dropout))
self.gcn_convs = nn.ModuleList()
for _ in range(gcn_depth):
gcn_conv = nn.Sequential(nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(),
nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(),
nn.Linear(out_feature_list[0], out_feature_list[0]), nn.Dropout(dropout))
self.gcn_convs.append(gcn_conv)
self.gcn_out = nn.Sequential(nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(),
nn.Linear(out_feature_list[0],out_feature_list[0]),nn.Tanh(),
nn.Linear(out_feature_list[0], out_feature_list[1]), nn.Dropout(dropout))
self.dropout = nn.Dropout(dropout)
def forward(self, input, adj, activation=None):
# input : 16x9x9
# adj : 16x4x9x9
hidden = torch.stack([self.gcn_in(input) for _ in range(adj.size(1))], 1)
hidden = torch.einsum('bijk,bikl->bijl', (adj, hidden))
hidden = torch.sum(hidden, 1) + self.gcn_in(input)
hidden = activation(hidden) if activation is not None else hidden
for gcn_conv in self.gcn_convs:
hidden1 = torch.stack([gcn_conv(hidden) for _ in range(adj.size(1))], 1)
hidden1 = torch.einsum('bijk,bikl->bijl', (adj, hidden1))
hidden = torch.sum(hidden1, 1) + gcn_conv(hidden)
hidden = activation(hidden) if activation is not None else hidden
output = torch.stack([self.gcn_out(hidden) for _ in range(adj.size(1))], 1)
output = torch.einsum('bijk,bikl->bijl', (adj, output))
output = torch.sum(output, 1) + self.gcn_out(hidden)
output = activation(output) if activation is not None else output
return output
class GraphAggregation(Module):
def __init__(self, in_features, out_features, m_dim, dropout):
super(GraphAggregation, self).__init__()
self.sigmoid_linear = nn.Sequential(nn.Linear(in_features+m_dim, out_features), nn.Sigmoid())
self.tanh_linear = nn.Sequential(nn.Linear(in_features+m_dim, out_features), nn.Tanh())
self.dropout = nn.Dropout(dropout)
def forward(self, input, activation):
i = self.sigmoid_linear(input)
j = self.tanh_linear(input)
output = torch.sum(torch.mul(i,j), 1)
output = activation(output) if activation is not None\
else output
output = self.dropout(output)
return output"""
"""class Attention(nn.Module):
def __init__(self, dim, heads=4, attention_dropout=0., proj_dropout=0.):
super().__init__()
self.heads = heads
self.scale = 1./dim**0.5
#self.scale = torch.div(1, torch.pow(dim, 0.5)) #1./torch.pow(dim, 0.5) #dim**0.5 torch.div(x, 0.5)
self.qkv = nn.Linear(dim, dim*3, bias=False)
self.attention_dropout = nn.Dropout(attention_dropout)
self.out = nn.Sequential(
nn.Linear(dim, dim),
nn.Dropout(proj_dropout)
)
#self.noise_strength_1 = torch.nn.Parameter(torch.zeros([]))
def forward(self, x):
b, n, c = x.shape
#x = x + torch.randn([x.size(0), x.size(1), 1], device=x.device) * self.noise_strength_1
qkv = self.qkv(x).reshape(b, n, 3, self.heads, c//self.heads)
q, k, v = qkv.permute(2, 0, 3, 1, 4)
dot = (q @ k.transpose(-2, -1)) * self.scale
attn = dot.softmax(dim=-1)
attn = self.attention_dropout(attn)
x = (attn @ v).transpose(1, 2).reshape(b, n, c)
x = self.out(x)
return x, attn"""