Spaces:
Sleeping
Sleeping
import torch | |
def discriminator_loss(generator, discriminator, mol_graph, adj, annot, batch_size, device, grad_pen, lambda_gp,z_edge,z_node): | |
# Compute loss with real molecules. | |
logits_real_disc = discriminator(mol_graph) | |
prediction_real = - torch.mean(logits_real_disc) | |
# Compute loss with fake molecules. | |
node, edge, node_sample, edge_sample = generator(z_edge, z_node) | |
graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1) | |
logits_fake_disc = discriminator(graph.detach()) | |
prediction_fake = torch.mean(logits_fake_disc) | |
# Compute gradient loss. | |
eps = torch.rand(mol_graph.size(0),1).to(device) | |
x_int0 = (eps * mol_graph + (1. - eps) * graph).requires_grad_(True) | |
grad0 = discriminator(x_int0) | |
d_loss_gp = grad_pen(grad0, x_int0) | |
# Calculate total loss | |
d_loss = prediction_fake + prediction_real + d_loss_gp * lambda_gp | |
return node, edge,d_loss | |
def generator_loss(generator, discriminator, v, adj, annot, batch_size, penalty, matrices2mol, fps_r,submodel): | |
# Compute loss with fake molecules. | |
node, edge, node_sample, edge_sample = generator(adj, annot) | |
graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1) | |
logits_fake_disc = discriminator(graph) | |
prediction_fake = - torch.mean(logits_fake_disc) | |
# Produce molecules. | |
g_edges_hat_sample = torch.max(edge_sample, -1)[1] | |
g_nodes_hat_sample = torch.max(node_sample , -1)[1] | |
fake_mol = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True) | |
for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)] | |
g_loss = prediction_fake | |
# Compute penalty loss. | |
if submodel == "RL": | |
reward = penalty(fake_mol, fps_r) | |
# Reinforcement Loss | |
rew_fake = v(graph) | |
reward_loss = torch.mean(rew_fake) ** 2 + reward | |
# Calculate total loss | |
g_loss = prediction_fake + reward_loss * 1 | |
return g_loss, fake_mol, g_edges_hat_sample, g_nodes_hat_sample, node, edge | |
def discriminator2_loss(generator, discriminator, mol_graph, adj, annot, batch_size, device, grad_pen, lambda_gp,akt1_adj,akt1_annot): | |
# Generate molecules. | |
dr_edges, dr_nodes = generator(adj, | |
annot, | |
akt1_adj, | |
akt1_annot) | |
dr_edges_hat = dr_edges.view(batch_size, -1) | |
dr_nodes_hat = dr_nodes.view(batch_size, -1) | |
dr_graph = torch.cat((dr_nodes_hat, dr_edges_hat), dim=-1) | |
# Compute loss with fake molecules. | |
dr_logits_fake = discriminator(dr_graph.detach()) | |
d2_loss_fake = torch.mean(dr_logits_fake) | |
# Compute loss with real molecules. | |
dr_logits_real2 = discriminator(mol_graph) | |
d2_loss_real = - torch.mean(dr_logits_real2) | |
# Compute gradient loss. | |
eps_dr = torch.rand(mol_graph.size(0),1).to(device) | |
x_int0_dr = (eps_dr * mol_graph + (1. - eps_dr) * dr_graph).requires_grad_(True) | |
grad0_dr = discriminator(x_int0_dr) | |
d2_loss_gp = grad_pen(grad0_dr, x_int0_dr) | |
# Compute total loss. | |
d2_loss = d2_loss_fake + d2_loss_real + d2_loss_gp * lambda_gp | |
return d2_loss | |
def generator2_loss(generator, discriminator, v, adj, annot, batch_size, penalty, matrices2mol, fps_r,ak1_adj,akt1_annot, submodel): | |
# Generate molecules. | |
dr_edges_g, dr_nodes_g = generator(adj, | |
annot, | |
ak1_adj, | |
akt1_annot) | |
dr_edges_hat_g = dr_edges_g.view(batch_size, -1) | |
dr_nodes_hat_g = dr_nodes_g.view(batch_size, -1) | |
dr_graph_g = torch.cat((dr_nodes_hat_g, dr_edges_hat_g), dim=-1) | |
# Compute loss with fake molecules. | |
dr_g_edges_hat_sample, dr_g_nodes_hat_sample = torch.max(dr_edges_g, -1)[1], torch.max(dr_nodes_g, -1)[1] | |
g_tra_logits_fake2 = discriminator(dr_graph_g) | |
g2_loss_fake = - torch.mean(g_tra_logits_fake2) | |
# Reward | |
fake_mol_g = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True) | |
for e_, n_ in zip(dr_g_edges_hat_sample, dr_g_nodes_hat_sample)] | |
g2_loss = g2_loss_fake | |
if submodel == "RL": | |
reward2 = penalty(fake_mol_g, fps_r) | |
# Reinforcement Loss | |
rew_fake2 = v(dr_graph_g) | |
reward_loss2 = torch.mean(rew_fake2) ** 2 + reward2 | |
# Calculate total loss | |
g2_loss = g2_loss_fake + reward_loss2 * 10 | |
return g2_loss, fake_mol_g, dr_g_edges_hat_sample, dr_g_nodes_hat_sample#, reward2 |