DrugGEN / loss.py
osbm's picture
add loss
0b7b562
raw
history blame
4.99 kB
import torch
def discriminator_loss(generator, discriminator, mol_graph, adj, annot, batch_size, device, grad_pen, lambda_gp,z_edge,z_node):
# Compute loss with real molecules.
logits_real_disc = discriminator(mol_graph)
prediction_real = - torch.mean(logits_real_disc)
# Compute loss with fake molecules.
node, edge, node_sample, edge_sample = generator(z_edge, z_node)
graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1)
logits_fake_disc = discriminator(graph.detach())
prediction_fake = torch.mean(logits_fake_disc)
# Compute gradient loss.
eps = torch.rand(mol_graph.size(0),1).to(device)
x_int0 = (eps * mol_graph + (1. - eps) * graph).requires_grad_(True)
grad0 = discriminator(x_int0)
d_loss_gp = grad_pen(grad0, x_int0)
# Calculate total loss
d_loss = prediction_fake + prediction_real + d_loss_gp * lambda_gp
return node, edge,d_loss
def generator_loss(generator, discriminator, v, adj, annot, batch_size, penalty, matrices2mol, fps_r,submodel):
# Compute loss with fake molecules.
node, edge, node_sample, edge_sample = generator(adj, annot)
graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1)
logits_fake_disc = discriminator(graph)
prediction_fake = - torch.mean(logits_fake_disc)
# Produce molecules.
g_edges_hat_sample = torch.max(edge_sample, -1)[1]
g_nodes_hat_sample = torch.max(node_sample , -1)[1]
fake_mol = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True)
for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]
g_loss = prediction_fake
# Compute penalty loss.
if submodel == "RL":
reward = penalty(fake_mol, fps_r)
# Reinforcement Loss
rew_fake = v(graph)
reward_loss = torch.mean(rew_fake) ** 2 + reward
# Calculate total loss
g_loss = prediction_fake + reward_loss * 1
return g_loss, fake_mol, g_edges_hat_sample, g_nodes_hat_sample, node, edge
def discriminator2_loss(generator, discriminator, mol_graph, adj, annot, batch_size, device, grad_pen, lambda_gp,akt1_adj,akt1_annot):
# Generate molecules.
dr_edges, dr_nodes = generator(adj,
annot,
akt1_adj,
akt1_annot)
dr_edges_hat = dr_edges.view(batch_size, -1)
dr_nodes_hat = dr_nodes.view(batch_size, -1)
dr_graph = torch.cat((dr_nodes_hat, dr_edges_hat), dim=-1)
# Compute loss with fake molecules.
dr_logits_fake = discriminator(dr_graph.detach())
d2_loss_fake = torch.mean(dr_logits_fake)
# Compute loss with real molecules.
dr_logits_real2 = discriminator(mol_graph)
d2_loss_real = - torch.mean(dr_logits_real2)
# Compute gradient loss.
eps_dr = torch.rand(mol_graph.size(0),1).to(device)
x_int0_dr = (eps_dr * mol_graph + (1. - eps_dr) * dr_graph).requires_grad_(True)
grad0_dr = discriminator(x_int0_dr)
d2_loss_gp = grad_pen(grad0_dr, x_int0_dr)
# Compute total loss.
d2_loss = d2_loss_fake + d2_loss_real + d2_loss_gp * lambda_gp
return d2_loss
def generator2_loss(generator, discriminator, v, adj, annot, batch_size, penalty, matrices2mol, fps_r,ak1_adj,akt1_annot, submodel):
# Generate molecules.
dr_edges_g, dr_nodes_g = generator(adj,
annot,
ak1_adj,
akt1_annot)
dr_edges_hat_g = dr_edges_g.view(batch_size, -1)
dr_nodes_hat_g = dr_nodes_g.view(batch_size, -1)
dr_graph_g = torch.cat((dr_nodes_hat_g, dr_edges_hat_g), dim=-1)
# Compute loss with fake molecules.
dr_g_edges_hat_sample, dr_g_nodes_hat_sample = torch.max(dr_edges_g, -1)[1], torch.max(dr_nodes_g, -1)[1]
g_tra_logits_fake2 = discriminator(dr_graph_g)
g2_loss_fake = - torch.mean(g_tra_logits_fake2)
# Reward
fake_mol_g = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True)
for e_, n_ in zip(dr_g_edges_hat_sample, dr_g_nodes_hat_sample)]
g2_loss = g2_loss_fake
if submodel == "RL":
reward2 = penalty(fake_mol_g, fps_r)
# Reinforcement Loss
rew_fake2 = v(dr_graph_g)
reward_loss2 = torch.mean(rew_fake2) ** 2 + reward2
# Calculate total loss
g2_loss = g2_loss_fake + reward_loss2 * 10
return g2_loss, fake_mol_g, dr_g_edges_hat_sample, dr_g_nodes_hat_sample#, reward2