DrugGEN / src /model /layers.py
gyigit's picture
refactor
4c9e6d9
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
class MLP(nn.Module):
"""
A simple Multi-Layer Perceptron (MLP) module consisting of two linear layers with a ReLU activation in between,
followed by a dropout on the output.
Attributes:
fc1 (nn.Linear): The first fully-connected layer.
act (nn.ReLU): ReLU activation function.
fc2 (nn.Linear): The second fully-connected layer.
droprateout (nn.Dropout): Dropout layer applied to the output.
"""
def __init__(self, in_feat, hid_feat=None, out_feat=None, dropout=0.):
"""
Initializes the MLP module.
Args:
in_feat (int): Number of input features.
hid_feat (int, optional): Number of hidden features. Defaults to in_feat if not provided.
out_feat (int, optional): Number of output features. Defaults to in_feat if not provided.
dropout (float, optional): Dropout rate. Defaults to 0.
"""
super().__init__()
# Set hidden and output dimensions to input dimension if not specified
if not hid_feat:
hid_feat = in_feat
if not out_feat:
out_feat = in_feat
self.fc1 = nn.Linear(in_feat, hid_feat)
self.act = nn.ReLU()
self.fc2 = nn.Linear(hid_feat, out_feat)
self.droprateout = nn.Dropout(dropout)
def forward(self, x):
"""
Forward pass for the MLP.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after applying the linear layers, activation, and dropout.
"""
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return self.droprateout(x)
class MHA(nn.Module):
"""
Multi-Head Attention (MHA) module of the graph transformer with edge features incorporated into the attention computation.
Attributes:
heads (int): Number of attention heads.
scale (float): Scaling factor for the attention scores.
q, k, v (nn.Linear): Linear layers to project the node features into query, key, and value embeddings.
e (nn.Linear): Linear layer to project the edge features.
d_k (int): Dimension of each attention head.
out_e (nn.Linear): Linear layer applied to the computed edge features.
out_n (nn.Linear): Linear layer applied to the aggregated node features.
"""
def __init__(self, dim, heads, attention_dropout=0.):
"""
Initializes the Multi-Head Attention module.
Args:
dim (int): Dimensionality of the input features.
heads (int): Number of attention heads.
attention_dropout (float, optional): Dropout rate for attention (not used explicitly in this implementation).
"""
super().__init__()
# Ensure that dimension is divisible by the number of heads
assert dim % heads == 0
self.heads = heads
self.scale = 1. / math.sqrt(dim) # Scaling factor for attention
# Linear layers for projecting node features
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
# Linear layer for projecting edge features
self.e = nn.Linear(dim, dim)
self.d_k = dim // heads # Dimension per head
# Linear layers for output transformations
self.out_e = nn.Linear(dim, dim)
self.out_n = nn.Linear(dim, dim)
def forward(self, node, edge):
"""
Forward pass for the Multi-Head Attention.
Args:
node (torch.Tensor): Node feature tensor of shape (batch, num_nodes, dim).
edge (torch.Tensor): Edge feature tensor of shape (batch, num_nodes, num_nodes, dim).
Returns:
tuple: (updated node features, updated edge features)
"""
b, n, c = node.shape
# Compute query, key, and value embeddings and reshape for multi-head attention
q_embed = self.q(node).view(b, n, self.heads, c // self.heads)
k_embed = self.k(node).view(b, n, self.heads, c // self.heads)
v_embed = self.v(node).view(b, n, self.heads, c // self.heads)
# Compute edge embeddings
e_embed = self.e(edge).view(b, n, n, self.heads, c // self.heads)
# Adjust dimensions for broadcasting: add singleton dimensions to queries and keys
q_embed = q_embed.unsqueeze(2) # Shape: (b, n, 1, heads, c//heads)
k_embed = k_embed.unsqueeze(1) # Shape: (b, 1, n, heads, c//heads)
# Compute attention scores
attn = q_embed * k_embed
attn = attn / math.sqrt(self.d_k)
attn = attn * (e_embed + 1) * e_embed # Modulated attention incorporating edge features
edge_out = self.out_e(attn.flatten(3)) # Flatten last dimension for linear layer
# Apply softmax over the node dimension to obtain normalized attention weights
attn = F.softmax(attn, dim=2)
v_embed = v_embed.unsqueeze(1) # Adjust dimensions to broadcast: (b, 1, n, heads, c//heads)
v_embed = attn * v_embed
v_embed = v_embed.sum(dim=2).flatten(2)
node_out = self.out_n(v_embed)
return node_out, edge_out
class Encoder_Block(nn.Module):
"""
Transformer encoder block that integrates node and edge features.
Consists of:
- A multi-head attention layer with edge modulation.
- Two MLP layers, each with residual connections and layer normalization.
Attributes:
ln1, ln3, ln4, ln5, ln6 (nn.LayerNorm): Layer normalization modules.
attn (MHA): Multi-head attention module.
mlp, mlp2 (MLP): MLP modules for further transformation of node and edge features.
"""
def __init__(self, dim, heads, act, mlp_ratio=4, drop_rate=0.):
"""
Initializes the encoder block.
Args:
dim (int): Dimensionality of the input features.
heads (int): Number of attention heads.
act (callable): Activation function (not explicitly used in this block, but provided for potential extensions).
mlp_ratio (int, optional): Ratio to determine the hidden layer size in the MLP. Defaults to 4.
drop_rate (float, optional): Dropout rate applied in the MLPs. Defaults to 0.
"""
super().__init__()
self.ln1 = nn.LayerNorm(dim)
self.attn = MHA(dim, heads, drop_rate)
self.ln3 = nn.LayerNorm(dim)
self.ln4 = nn.LayerNorm(dim)
self.mlp = MLP(dim, dim * mlp_ratio, dim, dropout=drop_rate)
self.mlp2 = MLP(dim, dim * mlp_ratio, dim, dropout=drop_rate)
self.ln5 = nn.LayerNorm(dim)
self.ln6 = nn.LayerNorm(dim)
def forward(self, x, y):
"""
Forward pass of the encoder block.
Args:
x (torch.Tensor): Node feature tensor.
y (torch.Tensor): Edge feature tensor.
Returns:
tuple: (updated node features, updated edge features)
"""
x1 = self.ln1(x)
x2, y1 = self.attn(x1, y)
x2 = x1 + x2
y2 = y + y1
x2 = self.ln3(x2)
y2 = self.ln4(y2)
x = self.ln5(x2 + self.mlp(x2))
y = self.ln6(y2 + self.mlp2(y2))
return x, y
class TransformerEncoder(nn.Module):
"""
Transformer Encoder composed of a sequence of encoder blocks.
Attributes:
Encoder_Blocks (nn.ModuleList): A list of Encoder_Block modules stacked sequentially.
"""
def __init__(self, dim, depth, heads, act, mlp_ratio=4, drop_rate=0.1):
"""
Initializes the Transformer Encoder.
Args:
dim (int): Dimensionality of the input features.
depth (int): Number of encoder blocks to stack.
heads (int): Number of attention heads in each block.
act (callable): Activation function (passed to encoder blocks for potential use).
mlp_ratio (int, optional): Ratio for determining the hidden layer size in MLP modules. Defaults to 4.
drop_rate (float, optional): Dropout rate for the MLPs within each block. Defaults to 0.1.
"""
super().__init__()
self.Encoder_Blocks = nn.ModuleList([
Encoder_Block(dim, heads, act, mlp_ratio, drop_rate)
for _ in range(depth)
])
def forward(self, x, y):
"""
Forward pass of the Transformer Encoder.
Args:
x (torch.Tensor): Node feature tensor.
y (torch.Tensor): Edge feature tensor.
Returns:
tuple: (final node features, final edge features) after processing through all encoder blocks.
"""
for block in self.Encoder_Blocks:
x, y = block(x, y)
return x, y