Spaces:
Running
Running
import math | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
class MLP(nn.Module): | |
""" | |
A simple Multi-Layer Perceptron (MLP) module consisting of two linear layers with a ReLU activation in between, | |
followed by a dropout on the output. | |
Attributes: | |
fc1 (nn.Linear): The first fully-connected layer. | |
act (nn.ReLU): ReLU activation function. | |
fc2 (nn.Linear): The second fully-connected layer. | |
droprateout (nn.Dropout): Dropout layer applied to the output. | |
""" | |
def __init__(self, in_feat, hid_feat=None, out_feat=None, dropout=0.): | |
""" | |
Initializes the MLP module. | |
Args: | |
in_feat (int): Number of input features. | |
hid_feat (int, optional): Number of hidden features. Defaults to in_feat if not provided. | |
out_feat (int, optional): Number of output features. Defaults to in_feat if not provided. | |
dropout (float, optional): Dropout rate. Defaults to 0. | |
""" | |
super().__init__() | |
# Set hidden and output dimensions to input dimension if not specified | |
if not hid_feat: | |
hid_feat = in_feat | |
if not out_feat: | |
out_feat = in_feat | |
self.fc1 = nn.Linear(in_feat, hid_feat) | |
self.act = nn.ReLU() | |
self.fc2 = nn.Linear(hid_feat, out_feat) | |
self.droprateout = nn.Dropout(dropout) | |
def forward(self, x): | |
""" | |
Forward pass for the MLP. | |
Args: | |
x (torch.Tensor): Input tensor. | |
Returns: | |
torch.Tensor: Output tensor after applying the linear layers, activation, and dropout. | |
""" | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.fc2(x) | |
return self.droprateout(x) | |
class MHA(nn.Module): | |
""" | |
Multi-Head Attention (MHA) module of the graph transformer with edge features incorporated into the attention computation. | |
Attributes: | |
heads (int): Number of attention heads. | |
scale (float): Scaling factor for the attention scores. | |
q, k, v (nn.Linear): Linear layers to project the node features into query, key, and value embeddings. | |
e (nn.Linear): Linear layer to project the edge features. | |
d_k (int): Dimension of each attention head. | |
out_e (nn.Linear): Linear layer applied to the computed edge features. | |
out_n (nn.Linear): Linear layer applied to the aggregated node features. | |
""" | |
def __init__(self, dim, heads, attention_dropout=0.): | |
""" | |
Initializes the Multi-Head Attention module. | |
Args: | |
dim (int): Dimensionality of the input features. | |
heads (int): Number of attention heads. | |
attention_dropout (float, optional): Dropout rate for attention (not used explicitly in this implementation). | |
""" | |
super().__init__() | |
# Ensure that dimension is divisible by the number of heads | |
assert dim % heads == 0 | |
self.heads = heads | |
self.scale = 1. / math.sqrt(dim) # Scaling factor for attention | |
# Linear layers for projecting node features | |
self.q = nn.Linear(dim, dim) | |
self.k = nn.Linear(dim, dim) | |
self.v = nn.Linear(dim, dim) | |
# Linear layer for projecting edge features | |
self.e = nn.Linear(dim, dim) | |
self.d_k = dim // heads # Dimension per head | |
# Linear layers for output transformations | |
self.out_e = nn.Linear(dim, dim) | |
self.out_n = nn.Linear(dim, dim) | |
def forward(self, node, edge): | |
""" | |
Forward pass for the Multi-Head Attention. | |
Args: | |
node (torch.Tensor): Node feature tensor of shape (batch, num_nodes, dim). | |
edge (torch.Tensor): Edge feature tensor of shape (batch, num_nodes, num_nodes, dim). | |
Returns: | |
tuple: (updated node features, updated edge features) | |
""" | |
b, n, c = node.shape | |
# Compute query, key, and value embeddings and reshape for multi-head attention | |
q_embed = self.q(node).view(b, n, self.heads, c // self.heads) | |
k_embed = self.k(node).view(b, n, self.heads, c // self.heads) | |
v_embed = self.v(node).view(b, n, self.heads, c // self.heads) | |
# Compute edge embeddings | |
e_embed = self.e(edge).view(b, n, n, self.heads, c // self.heads) | |
# Adjust dimensions for broadcasting: add singleton dimensions to queries and keys | |
q_embed = q_embed.unsqueeze(2) # Shape: (b, n, 1, heads, c//heads) | |
k_embed = k_embed.unsqueeze(1) # Shape: (b, 1, n, heads, c//heads) | |
# Compute attention scores | |
attn = q_embed * k_embed | |
attn = attn / math.sqrt(self.d_k) | |
attn = attn * (e_embed + 1) * e_embed # Modulated attention incorporating edge features | |
edge_out = self.out_e(attn.flatten(3)) # Flatten last dimension for linear layer | |
# Apply softmax over the node dimension to obtain normalized attention weights | |
attn = F.softmax(attn, dim=2) | |
v_embed = v_embed.unsqueeze(1) # Adjust dimensions to broadcast: (b, 1, n, heads, c//heads) | |
v_embed = attn * v_embed | |
v_embed = v_embed.sum(dim=2).flatten(2) | |
node_out = self.out_n(v_embed) | |
return node_out, edge_out | |
class Encoder_Block(nn.Module): | |
""" | |
Transformer encoder block that integrates node and edge features. | |
Consists of: | |
- A multi-head attention layer with edge modulation. | |
- Two MLP layers, each with residual connections and layer normalization. | |
Attributes: | |
ln1, ln3, ln4, ln5, ln6 (nn.LayerNorm): Layer normalization modules. | |
attn (MHA): Multi-head attention module. | |
mlp, mlp2 (MLP): MLP modules for further transformation of node and edge features. | |
""" | |
def __init__(self, dim, heads, act, mlp_ratio=4, drop_rate=0.): | |
""" | |
Initializes the encoder block. | |
Args: | |
dim (int): Dimensionality of the input features. | |
heads (int): Number of attention heads. | |
act (callable): Activation function (not explicitly used in this block, but provided for potential extensions). | |
mlp_ratio (int, optional): Ratio to determine the hidden layer size in the MLP. Defaults to 4. | |
drop_rate (float, optional): Dropout rate applied in the MLPs. Defaults to 0. | |
""" | |
super().__init__() | |
self.ln1 = nn.LayerNorm(dim) | |
self.attn = MHA(dim, heads, drop_rate) | |
self.ln3 = nn.LayerNorm(dim) | |
self.ln4 = nn.LayerNorm(dim) | |
self.mlp = MLP(dim, dim * mlp_ratio, dim, dropout=drop_rate) | |
self.mlp2 = MLP(dim, dim * mlp_ratio, dim, dropout=drop_rate) | |
self.ln5 = nn.LayerNorm(dim) | |
self.ln6 = nn.LayerNorm(dim) | |
def forward(self, x, y): | |
""" | |
Forward pass of the encoder block. | |
Args: | |
x (torch.Tensor): Node feature tensor. | |
y (torch.Tensor): Edge feature tensor. | |
Returns: | |
tuple: (updated node features, updated edge features) | |
""" | |
x1 = self.ln1(x) | |
x2, y1 = self.attn(x1, y) | |
x2 = x1 + x2 | |
y2 = y + y1 | |
x2 = self.ln3(x2) | |
y2 = self.ln4(y2) | |
x = self.ln5(x2 + self.mlp(x2)) | |
y = self.ln6(y2 + self.mlp2(y2)) | |
return x, y | |
class TransformerEncoder(nn.Module): | |
""" | |
Transformer Encoder composed of a sequence of encoder blocks. | |
Attributes: | |
Encoder_Blocks (nn.ModuleList): A list of Encoder_Block modules stacked sequentially. | |
""" | |
def __init__(self, dim, depth, heads, act, mlp_ratio=4, drop_rate=0.1): | |
""" | |
Initializes the Transformer Encoder. | |
Args: | |
dim (int): Dimensionality of the input features. | |
depth (int): Number of encoder blocks to stack. | |
heads (int): Number of attention heads in each block. | |
act (callable): Activation function (passed to encoder blocks for potential use). | |
mlp_ratio (int, optional): Ratio for determining the hidden layer size in MLP modules. Defaults to 4. | |
drop_rate (float, optional): Dropout rate for the MLPs within each block. Defaults to 0.1. | |
""" | |
super().__init__() | |
self.Encoder_Blocks = nn.ModuleList([ | |
Encoder_Block(dim, heads, act, mlp_ratio, drop_rate) | |
for _ in range(depth) | |
]) | |
def forward(self, x, y): | |
""" | |
Forward pass of the Transformer Encoder. | |
Args: | |
x (torch.Tensor): Node feature tensor. | |
y (torch.Tensor): Edge feature tensor. | |
Returns: | |
tuple: (final node features, final edge features) after processing through all encoder blocks. | |
""" | |
for block in self.Encoder_Blocks: | |
x, y = block(x, y) | |
return x, y |