Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import streamlit as st
|
2 |
from trainer import Trainer
|
3 |
import random
|
|
|
|
|
4 |
|
5 |
class DrugGENConfig:
|
6 |
submodel='CrossLoss'
|
@@ -124,8 +126,8 @@ if submitted:
|
|
124 |
results = trainer.inference()
|
125 |
st.success(f"Inference of {model_name} took {results['runtime']:.2f} seconds.")
|
126 |
|
127 |
-
with st.expander("Expand to see scores"):
|
128 |
-
|
129 |
st.success(f"Validity: {results['fraction_valid']}")
|
130 |
st.success(f"Uniqueness: {results['uniqueness']}")
|
131 |
st.success(f"Novelty: {results['novelty']}")
|
@@ -134,6 +136,28 @@ if submitted:
|
|
134 |
inference_drugs = f.read()
|
135 |
st.download_button(label="Click to download generated molecules", data=inference_drugs, file_name=f'{model_name}_inference.smi', mime="text/plain")
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
else:
|
138 |
st.warning("Please select a model to make inference")
|
139 |
|
|
|
1 |
import streamlit as st
|
2 |
from trainer import Trainer
|
3 |
import random
|
4 |
+
from rdkit.Chem import Draw
|
5 |
+
from rdkit import Chem
|
6 |
|
7 |
class DrugGENConfig:
|
8 |
submodel='CrossLoss'
|
|
|
126 |
results = trainer.inference()
|
127 |
st.success(f"Inference of {model_name} took {results['runtime']:.2f} seconds.")
|
128 |
|
129 |
+
with st.expander("Expand to see the generation performance scores"):
|
130 |
+
st.write("### Generation performance scores (novelty is calculated in comparison to the training dataset)")
|
131 |
st.success(f"Validity: {results['fraction_valid']}")
|
132 |
st.success(f"Uniqueness: {results['uniqueness']}")
|
133 |
st.success(f"Novelty: {results['novelty']}")
|
|
|
136 |
inference_drugs = f.read()
|
137 |
st.download_button(label="Click to download generated molecules", data=inference_drugs, file_name=f'{model_name}_inference.smi', mime="text/plain")
|
138 |
|
139 |
+
|
140 |
+
st.write("Structures of randomly selected 12 de novo molecules from the inference set:")
|
141 |
+
# from rdkit.Chem import Draw
|
142 |
+
# img = Draw.MolsToGridImage(mol_list, molsPerRow=5, subImgSize=(250, 250), maxMols=num_mols,
|
143 |
+
# legends=None, useSVG=True)
|
144 |
+
generated_molecule_list = inference_drugs.split("\n")
|
145 |
+
|
146 |
+
selected_molecules = random.choices(generated_molecule_list,k=12)
|
147 |
+
|
148 |
+
selected_molecules = [Chem.MolFromSmiles(mol) for mol in selected_molecules]
|
149 |
+
|
150 |
+
molecule_image = Draw.MolsToGridImage(
|
151 |
+
selected_molecules,
|
152 |
+
molsPerRow=3,
|
153 |
+
subImgSize=(250, 250),
|
154 |
+
maxMols=len(selected_molecules),
|
155 |
+
# legends=None,
|
156 |
+
useSVG=True
|
157 |
+
)
|
158 |
+
st.image(molecule_image)
|
159 |
+
|
160 |
+
|
161 |
else:
|
162 |
st.warning("Please select a model to make inference")
|
163 |
|